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Abstract

How should an employer design its retention and promotion policy when there

is competition for its employees? In an environment where the incumbent employer

learns more about its workers than other potential employers, we show that the incum-

bent’s optimal policy always over-retains workers—retaining workers that it would

have let go if all employers had learnt about workers symmetrically—to dampen the

positive signalling effect of retention. In contrast, the optimal policy may over- or

under-promote workers. The incumbent’s incentive to distort its policy is driven by

the technologies of competing firms in the labour market. We demonstrate the extent

to which the firm can implement the optimal policy without the ability to commit and

study the incentive for the firm to manipulate the signalling effect via designing jobs.

Our results shed light on the role of (possibly vacuous) job titles and provide a novel

rationale for the Peter Principle.
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1 Introduction

How should a firm retain or promote workers who can leave for another employer? When
an employer has private information about its workers, retention or promotion serves as
a positive signal about workers’ productivity to other potential employers, driving up the
wage.1 In this paper, we explore whether a firm would dampen the positive signalling
effect by retaining or promoting some “lemon” workers along with some “peach” workers,
despite the costs from doing so. After all, workplaces abound with stories of managers who
do not deserve to be managers. We show that the firm always finds it optimal to over-retain;
i.e., retain workers that it would have let go under complete information; however, whether
it would over- or under-promote workers is ambiguous.

Specifically, we consider an incumbent firm with a unit mass of junior workers. The
firm must decide who to retain and, among those retained, who to promote to a senior
position. The workers differ in their abilities, and the output from a worker in a given
position increases linearly in ability. The output from the senior position is more sensitive
to the worker’s ability, and a worker produces more in the senior position if and only if the
worker’s ability is above a threshold.

The labour market also consists of heterogeneous outside firms with linear production
technologies. To retain a worker (either in a junior or a senior position), the incumbent firm
pays a wage equal to the worker’s outside option—the highest wage that the worker can
command from outside firms. To focus on the signalling effects of the incumbent’s reten-
tion/promotion decisions, we assume that outside firms only observe whether each worker
was retained and, if so, whether the worker was promoted. The assumptions together im-
ply that a worker’s wage is an increasing and convex function of the average ability of all
workers in the position.

The incumbent firm’s problem is to maximize its profits by designing an HR policy
that specifies retention and promotion probabilities that are increasing in ability. We are
interested in how the firm’s optimal HR policy differs from the benchmark HR policy that
the firm would have adopted under complete information. In fact, due to competition, the
complete-information benchmark is equivalent to the efficient allocation of workers that
maximises output across all firms. We focus on the case in which it is efficient for the firm
to retain workers if and only if their ability is above a certain threshold.

1While the labour literature has long studied the signalling effect of promotions since Waldman (1984),
little attention has been paid to the signalling effect of retention let alone on the joint signalling effects of
retention and promotions.
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Our first main finding is that any optimal HR policy must over-retain workers relative to
the benchmark (Theorem 1); i.e., the firm always retains some workers whose output would
be higher in outside firms. Retaining a marginal worker is beneficial for the firm because it
lowers the average ability, and thus the wage cost, of all retained workers; however, doing
so is also costly because the worker’s output would be lower than the wage based on the
average ability. We show that the benefit strictly dominates the cost for the worker for
whom it is just efficient for the firm to retain and that this, in turn, implies the firm would
promote workers with lower abilities.

This result is driven by the convexity of the worker’s outside option arising from the
heterogeneity in the production technologies of outside firms. Intuitively, because the firm
pays workers their outside options that depend on the average ability of retained workers
(which must be greater than the marginally retained worker’s ability), convexity ensures it
is worthwhile for the incumbent to lower the average by over-retaining workers.

Our second main finding is that an optimal HR policy may exhibit over-promotion,
under-promotion, or even both if the policy is non-deterministic (Theorem 2). The same
rationale for over-retention means that over-promoting always increases the firm’s profits
from the promoted workers. However, whereas over-retention does not affect the firm’s
profits from workers who are let go, over-promotion always decreases the firm’s profits
from workers in the junior position because the marginally promoted worker was the best
among them. The comparison between these two opposing effects can go either way de-
pending on the parameters of the model.

We demonstrate that inefficient promotions also arise from the heterogeneity in pro-
duction technologies among outside firms by showing that there is a sense in which the
likelihood of over-promotion is affected by changes in the convexity of the worker’s out-
side options but not by changes in the relative marginal product of workers at junior and
senior positions. We also show that over-promotion is more likely with a better pool of
workers in the sense of the distribution of workers’ abilities increasing in the likelihood
ratio order.

One interpretation of our environment is that the firm commits to the optimal HR policy
by, for example, adopting a rule-based HR department to make its retention and promotion
decisions (Milgrom and Roberts, 1988) or by establishing reputation (Waldman, 2003). In-
deed, because commitment is valuable, the firm has an incentive to find ways to commit.
Alternatively, we show that it is enough for the firm to be able to commit to a Blackwell
experiment about workers’ abilities, which can be interpreted as a test, an exam, or an
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objective review of the workers’ abilities.2 Moreover, when the optimal HR policy is de-
terministic, it can be implemented even if the firm does not have commitment power, as
long as the outside firms can observe the numbers of retained and promoted workers.

Our results can be thought of as having a normative implication for firms when they
design career paths for workers while taking into account the fact workers may leave firms
after promotions. The results can also be viewed as a benchmark to assess alternative
HR policies. Our observation that firms can over-promote rationalizes the Peter Prin-
ciple (Peter and Hull, 1969)—which states that employees are promoted to their level of
incompetence—as a way for the firm to lower wage costs by attenuating the positive sig-
nalling effect of promotions.3

We also consider job design—interpreted as the firm merging positions—as an alternat-
ive way for the firm to attenuate the signalling effect of retention (with and without promo-
tions). We show firms cannot strictly benefit from merging positions; that is, firms prefer
workers to specialise. We also discuss when the firm may benefit from creating vacuous
job titles.

Methodologically, we solve the firm’s problem of designing an optimal HR policy by
transforming the problem into an equivalent information design game. This allows us to
use the tools of information design (Dworczak and Martini, 2019; Arieli et al., 2023) to
characterise the firm’s optimal HR policy.

Related literature The labour literature has long recognised the signalling effect of pro-
motions starting with Waldman (1984)—indeed, the term “promotion as signals” has be-
come widely used (Gibbons and Roberts, 2013). This literature has shown, in particular,
that firms have the incentive to under-promote workers in the presence of signalling ef-
fects (Waldman, 1984; Gibbons and Katz, 1991; Bernhardt, 1995; Ishida, 2004; Owan,
2004; Gibbons and Waldman, 2006; DeVaro and Waldman, 2012). However, the literature
has not focused on the signalling effect of retention. Instead, beginning with Greenwald
(1986), the literature has predominantly studied the adverse selection effect arising from
the employer’s strategic decision to only retain workers who are “good enough” following

2We note that the firm can implement any Blackwell experiment using contracts via an intermediary that
can be thought of as a line manager of workers (Deb, Pai and Said, 2023).

3We follow the interpretation of the principle by Lazear (2004). Others, such as Joao Ricardo (2000);
Fairburn and Malcomson (2001); Benson, Li and Shue (2019), interpret the Peter Principle as referring to “the
tendency to promote workers who excel at their current jobs while downplaying or ignoring their aptitude for
management.” They also focus on the role of promotions to provide incentives.
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attempts to poach workers by outside firms.4

We contribute to the labour literature in two ways. First, we distinguish retention from
promotion decisions and jointly study the signalling effects of these decisions.5 Second,
we study the firm’s incentive to over-retain or over-promote workers as a way to attenuate
the positive signalling effect of retention and promotion decisions to minimise wage costs.6

We do so by allowing the firm to commit to retention and promotion policies, which can
be viewed as a strengthening of the assumption in Ghosh and Waldman (2010) that allows
firms to (only) commit to letting go of workers.7

As noted by Baker, Jensen and Murphy (1988), retentions and promotions can also be
used to provide incentives directly (e.g., in the form of tournaments). We do not focus on
this aspect of retention and promotions, and analyse instead how asymmetric information
shapes the firm’s incentives to assign workers to the jobs for which they are best suited.
DeVaro and Waldman (2012) provide empirical evidence in support of the signalling effect
of promotions, and a number of papers find evidence for asymmetric learning in labour
markets (e.g., Gibbons and Katz, 1991; Schonberg, 2007; Pinkston, 2009; Kahn, 2013).
However, we are not aware of empirical studies that test whether firms over- or under-retain
or promote.

The firm’s problem we study is an example of a “signalling game with commitment” in
which the sender (i.e., the firm) has the ability to commit to signalling strategies (i.e., HR
policies). Like Boleslavsky and Shadmehr (2023),8 who study such a game, we adopt a
belief-based approach in solving the game.9 However, because our game has a continuum
of states, their approach cannot be applied in our environment. Instead, we exploit the linear
structure of labour technology and appeal to results from information design (Dworczak
and Martini, 2019; Arieli et al., 2023).

The case in which the firm cannot commit to HR policies but can disclose the distri-

4Gibbons and Katz (1991) is an exception—their model captures both the signalling and adverse selection
effects of retention. However, they do not consider promotions.

5In doing so, we abstract from the possible adverse selection effects that can arise with respect to both
retention and promotions.

6The possibility that over-promotions can benefit workers is briefly mentioned in the conclusion of
Bernhardt (1995).

7Following Waldman (1984), we do not introduce adverse selection (Greenwald, 1986; Gibbons and Katz,
1991) or allow the workers to possess private information (Costa, 1988).

8We note that a later version of Boleslavsky and Shadmehr (2023) also makes the same observation as
we do that a signalling game with commitment can be studied as an information design game in which the
sender chooses action sequentially rationally after learning about the state from a public experiment.

9See also Koessler, Laclau and Tomala (2024) who study a signalling game without commitment using
the belief-based approach.
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bution of assigned positions is equivalent to adding a credibility constraint (Lin and Liu,
2024) to the firm’s problem. However, because we study a game and the firm’s payoff
depends on the state (i.e., the workers’ abilities), the results from Lin and Liu (2024) do
not apply immediately to our environment. We are nevertheless able to solve the firm’s
constrained problem directly.

We emphasise that while we focus on an employer’s strategic incentive to retain and/or
promote its workers, our approach to solving a signalling game with commitment as well
as the relaxation of the commitment assumption are both generalisable to environments
beyond the one we study.

2 Set up

Consider a firm that employs a unit mass of junior workers. Each worker has a type, which
we interpret as the worker’s ability, and the distribution of workers’ types is given by a
cumulative distribution function F with full support on Θ := [0,1] with an associated prob-
ability density function f . The firm can let go, retain, or promote its workers. Following
Costa (1988), we assume that each worker’s output is affine and strictly increasing in the
worker’s type. Letting j = 1 and 2 denote the junior and senior positions, respectively, we
denote the output of a type-θ worker in position j ∈ {1,2} by v j : Θ → R defined as

v j (θ) := s j + k jθ ,

where s j ∈ R and k j ∈ R++. The intercept s j can be interpreted as firm-and-position-
specific human capital, and the slope k j as the marginal product of the worker’s ability in
position j. We assume that the more senior position has a higher marginal product but not
a uniformly higher total product; i.e., k2 > k1 and v2(θ)≥ v1(θ) if and only if θ ≥ θ 1 for
some θ 1 ∈ (0,1).10 We say that the firm assigns position j = 0 to mean that the firm lets
go of the worker, in which case there is zero output, v0(θ) := 0.

In addition to working for the firm, workers have access to a competitive labour market
consisting of a compact set I of outside firms with distinct production technologies that are
also affine and strictly increasing in θ . We denote the technology of an outside firm i ∈ I

as ci : Θ →R and let c(θ) := sup{ci(θ) : i ∈ I} to be type-θ worker’s highest output across

10More precisely, we assume that θ 1 ≡ s1−s2
k2−k1

∈ (0,1).
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all outside firms.11 As a supremum of strictly increasing affine functions, c(·) is strictly
increasing and convex. To ease the interpretation and presentation of results, we assume
that c(·) is, in fact, strictly convex and differentiable. We refer to the outside firm that
maximises the output of a type-θ worker as a θ -outside firm. Note that θ -outside firm’s
production technology, which we denote as cθ (·), is given by the tangent to c(·) at θ and
its worker’s marginal product is given by c′(θ). Thus, the convexity of c(·) reflects the fact
that θ -outside firm’s output is more sensitive to workers’ abilities when θ is higher—we
will demonstrate that this property is the key driver of our results. We further assume c(·)
to be such that, for some θ 0 ∈ (0,θ 1),

max{c(θ),v1(θ),v2(θ)}=





c(θ) if θ ∈ [0,θ 0),

v1(θ) if θ ∈ [θ 0,θ 1],

v2(θ) if θ ∈ [θ 1,1].

(1)

For an allocation of workers to firms to be efficient, each type-θ worker must be employed
at a firm (and in a position) that maximises the worker’s output. Thus, equation (1) means
that it is efficient for the firm to let go of workers whose type is below θ 0, retain workers
whose type lies in [θ 0,θ 1] at the junior level, and to retain and promote workers whose
type is above θ 1.12

A worker’s payoff is simply the wage. The firm’s payoff from paying a wage w to a
type-θ worker in position j is v j(θ)−w. As we explain in more detail below, we follow
Waldman (1984) and think of the firm as paying its workers just enough to ensure that they
will not be poached by other firms.13 Thus, c(·) can be interpreted as the wage cost for the
firm of a type-θ worker when the labour market is able to observe θ . We define Vj := v j−c

as the firm’s profit in such a case, and assume that maxV2 > maxV1 to capture the idea that
seniors can potentially be more profitable than junior workers.

We give a typical example of the firm’s production technology that satisfies our assump-
tions in Figure 1. The top figure in Figure 1 shows a typical output of workers in junior and

11We assume, without loss, that each outside firm has one position for its workers.
12The assumption that it is efficient for the firm to retain workers whose types are above θ 0 implies that

the incumbent firm values the highest type worker more than the labour market; i.e., v2(1)≥ c(1). In section
5.4, we discuss the case in which it may be efficient for the firm to let go of workers above some threshold
θ 2 ∈ (θ 1,1].

13To focus on the signalling effect of retention and promotion decisions, we do not allow the firm to
strategically let go of its workers after receiving a poaching offer as in Greenwald (1986) or allow other firms
to offer a menu of wages as in Costa (1988).
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senior positions, v1(·) and v2(·), respectively, as well as the maximum output of workers
across all outside firms, c(·). The bottom figure in Figure 1 shows the firm’s typical profit
from retaining workers in junior and senior positions when the market observes workers’
types, V1 and V2, respectively.

Figure 1: Firm’s production technology.

1
0

0

s2

s1

v1(✓) = s1 + k1✓

v2(✓) = s2 + k2✓

1
✓

✓
ω1ω0

v1(ω1) = v2(ω1)

v1(ω0) = c(ω0)

v2(ω2) = c(ω2)

V1(·) V2(·)

c(✓)

2.1 The firm’s problem

We study the firm’s problem of designing an HR policy, ϕ : Θ → ∆({0,1,2}), that, possibly
stochastically, lets go, retains at the current position, or promotes each type of worker. We
account for the interaction of the firm’s HR policy and the labour market by assuming
that the market can distinguish between workers based only on the positions that they are
assigned. Thus, to retain a worker in position j ∈ {1,2}, it suffices for the incumbent
employer to just outbid the market and pay a wage equal to the market’s expectation of the
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types of worker in position j.14 We denote the expected type of a worker in position j ∼ ϕ

as Eϕ [θ | j] :=
∫

Θ
θϕ( j|θ)dF(θ)∫

Θ
ϕ( j|θ)dF(θ) and let Ψ := (∆({0,1,2}))Θ denote the set of HR policies. We

first analyse the case in which the firm is able to commit to any HR policy. Thus, the firm’s
problem is given by:

max
ϕ∈Ψ

∫

Θ

2

∑
j=1

[
v j (θ)− c

(
Eϕ

[
θ̃ | j
])]

ϕ ( j|θ)dF (θ) . (2)

We also study two further variations of the firm’s problem: (i) the case in which the firm
cannot commit to HR policies, but the resulting marginal distribution of positions is observ-
able by the labour market, and (ii) the case in which the firm makes a retention and promo-
tion decisions in a sequentially rational manner after learning the type of each worker.

2.2 Simplifying the firm’s problem

An HR policy ϕ is a signalling strategy—a mapping from the firm’s private information,
θ ∈ Θ, to a costly action, j ∈ {0,1,2}, of assigning a position to each worker type. How-
ever, it is not clear how one goes about directly solving (2) that does not involve sequential
rationality constraint on the part of the firm (i.e., the sender). We therefore solve the firm’s
problem indirectly by studying a related, payoff-equivalent information design problem in
which the firm designs information about workers’ types instead of an HR policy. More
precisely, in this game, the firm first publicly chooses a Blackwell experiment about the
workers’ productivity, the result of which is public. We think of such an experiment as a
test of whether a worker has reached a particular milestone or passed an exam.

Letting M denote the set of payoff-irrelevant possible realisations of experiments with
|M| ≥ 3, we let Π := (∆M)Θ denote the set of possible Blackwell experiments that the
firm can choose. We assume that the firm has no private information about workers’ types.
Consequently, the firm’s choice of a Blackwell experiment, π ∈ Π, together with the prior
distribution F , completely determine how the firm and the labour market symmetrically
learn about the types of workers. Having observed the outcome of the experiment, m ∼
π(·|θ), the firm assigns positions, j ∈ {0,1,2}, to each of its workers in a sequentially
rational manner. The labour market, having observed (π,m, j) for each worker, makes
poaching offers in a sequentially rational manner.

14We implicitly assume a Bertrand-type competition for the workers so that c(·), strictly speaking, repres-
ents the second highest output of workers among firms in the labour market (see, for example, Blume, 2003).
We also assume that workers break ties in favour of the incumbent employer.
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In setting up the firm’s problem in the related game, we take a belief-based approach.
Because production technologies are affine in θ , both the firm’s and the market’s decisions
depend only on the posterior mean after observing (π,m) or (π,m, j). Moreover, be-
cause the firm and the labour market are symmetrically informed about workers’ types,
the assignment of positions provides no more information to the market than that provided
through the result of the experiment. Thus, if the realised posterior mean is E ∈ Θ, then
the firm knows that it must pay c(E) to keep its workers no matter the position it assigns so
that the firm chooses the position j ∈ {1,2} to maximise the average payoff of workers in
position j, v j(E). However, if the average payoff from optimally not letting go is negative,
the firm should simply let go of the workers. Thus, we let V : Θ → R be the firm’s value
function, i.e., its payoff from inducing posterior mean E, and define it as

V (E) :=
[

max
j∈{1,2}

v j (E)− c(E)
]

+

,

where [·]+ ≡ max{·,0}. Finally, because of the well-known fact (Gentzkow and Kamenica,
2016; Kolotilin, 2018) that the firm can induce any distribution of posterior means that is
a mean-preserving contraction of F (and the converse is also true), we can write the firm’s
information design problem as

V̂ ∗ := max
G∈MPC(F)

∫

Θ

V (E)dG(E) , (3)

where MPC(F) denotes the set of all mean-preserving contractions of F .
We first establish an equivalence between the firm’s original problem of choosing an

optimal HR policy and the firm’s problem of choosing an optimal distribution of posterior
means in the related information design game.

Lemma 1. The value of the firm’s problem, (2), in the original game equals the value of

the firm’s problem, (3), in the related game; i.e., V ∗ = V̂ ∗. Moreover, if G∗ solves (3), then

there exists an HR policy ϕ∗ ∈ Ψ that solves the firm’s original problem, (2), and induces

G∗ as the distribution of posterior means.

We further simplify the firm’s information design problem by showing that it is without
loss to only consider distributions of posterior means from a parametric family of CDFs.
Towards this goal, let us call a tuple (θ0,θ1,E2)∈ Θ3 as feasible if θ0 ∈ [0,θ 0], θ1 ∈ [θ0,1],
and E[θ |θ > θ0] ≤ E2 ≤ E[θ |θ ≥ θ1]. Given any feasible tuple (θ0,θ1,E2), we define a
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CDF Gθ0,θ1,E2 : R → [0,1], to be such that (i) G ∈ MPC(F); (ii) Gθ0,θ1,E2 and F coincide
on [0,θ 0], and (iii) the mass on [θ 0,1] from F is put on E[θ |θ0 < θ < θ1] and on E2. We
say that a distribution G is feasible if there exists a feasible tuple (θ0,θ1,E2) such that
G = Gθ0,θ1,E2 and, in that case, we also say that the tuple (θ0,θ1,E2) is associated with G.

Lemma 2. There exists a feasible G∗ that solves the information design problem, (3); i.e.,

V̂ ∗ = max
(θ0,θ1,E2)

∫

Θ

V (E)dGθ0,θ1,E2 (θ) s.t. (θ0,θ1,E2) is feasible. (4)

We prove Lemma 2 using results from Arieli et al. (2023). In particular, they show
that information design problems, such as the firm’s problem, (3), always have a solution
that belongs in a family of CDFs that contains the set of feasible CDFs. We then use the
structure of V to show that the firm’s problem is always solved by a feasible CDF. Import-
antly, because (4) is a maximisation problem with respect to three real-valued parameters,
Lemma 2 tells us that we can solve the firm’s information design problem, (3), and charac-
terise optimal distributions of posterior beliefs using the first-order approach.15

Once we derive an optimal distribution of posterior means that solve (4), Lemma 1 tells
us that we can obtain an HR policy that solves the original problem. However, in general,
many information structures can induce a particular distribution of posterior means.16 This
also implies that there is a multiplicity of optimal HR policies.

Among optimal HR policies, we sometimes focus our attention on HR policies that
have the property that higher-type workers are more likely to be assigned to a higher pos-
ition. We refer to such HR policies as being monotone.17 Monotone HR policies have the
desirable property that, in an enriched environment in which worker types are endogen-

15We note that the objective function need not be concave nor differentiable everywhere so that the first-
order conditions are not sufficient conditions for optima. Nevertheless, we are able to solve the problem using
the first-order approach by using the special properties of our environment and results from Dworczak and
Martini (2019) and Arieli et al. (2023).

16See Example 3 in Arieli et al. (2023).
17To formally define this property, note that an HR policy ϕ , when viewed as an information structure (i.e.,

with M = {0,1,2} and ϕ = π), induces three possible posterior means, {E j}2
j=0, where E j is the posterior

mean after observing j. Let ϕ̂(θ) ∈ ∆({E j}2
j=0) denote the distribution of posterior means such that

ϕ̂ (E|θ) =
{

ϕ ( j|θ) if ∃ j ∈ {0,1,2}, E = E j,

0 otherwise.

With this notation, an HR policy ϕ is monotone if, for any θ ′ ≥ θ , ϕ̂(θ ′) first-order stochastically dominates
ϕ̂(θ). Observe that if ϕ is deterministic, then supp(ϕ̂(·)) is a singleton, and thus, the monotonicity condition
requires that the posterior means are higher for higher types of workers.
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ous, higher-type workers would not have the incentive to pretend to be lower-type workers
(for example, by shirking).18 As we demonstrate later, it will also turn out to be related
to the types of HR policies that can be implemented even when firms do not have “full”
commitment power.

Importantly, any feasible distribution of posterior means G can be induced by a mono-
tone HR policy (Arieli et al., 2023). For example, given a feasible tuple (θ0,θ1,E2), the
following HR policy ϕ induces G(θ0,θ1,E2): ϕ lets go of the workers whose types lie in
[0,θ0] with probability one, promotes workers whose types lie in [θ1,1] with probability
one, and randomise between promoting and not promoting (but retaining) workers whose
types lie in [θ0,θ1]. Thus, we interpret θ0 as a retention threshold and θ1 as a always-

promote threshold, where we make the distinction to account for the possible randomisa-
tion. However, if E2 = E[θ |θ ≥ θ1], then θ0 can be interpreted as the promotion threshold
(i.e., workers are promoted if and only if their type is above θ1). Moreover, whenever
E2 ∈ {E[θ |θ > θ0],E[θ |θ ≥ θ1]}, the associated feasible G can be induced by a monotone
policy that is deterministic.19

3 Inefficiencies of optimal HR policies

Our main result concerns the nature of inefficiencies associated with the firm’s optimal
retention and promotion decisions. To be precise, we say that an HR policy ϕ exhibits
over-retention (resp. under-retention) if ϕ retains workers whose types are below (resp.
above) the efficient retention cutoff, θ 0, with positive probability.20 Under this definition,
an HR policy exhibits efficient retention if and only if it does not exhibit over-retention or
under-retention. We also emphasise that an HR policy can exhibit both over- and under-
retention if it over-retains some types of workers and under-retains other types of workers.
Analogously, we say that ϕ exhibits over-promotion (resp. under-promotion) if ϕ promotes
workers whose types are below (resp. above) the efficient promotion cutoff, θ 1, with posit-
ive probability. We study how the firm trades off its desire not to retain or promote workers
whose productivities are lower than the wage the firm must pay to ensure they do not leave,

18Goldstein and Leitner (2018) and Mensch (2021) provide discussions on why and when the monotonicity
property might be desirable.

19If E2 = E[θ |θ > θ0], workers whose types are above θ0 are all retained as juniors or are all promoted to
be seniors.

20We can equivalently interpret there to be a continuum of workers of each type such that the distribution
of types corresponds to F . Under such an interpretation, ϕ can be thought of as a deterministic mapping from
(i,θ) ∈ [0,1]×Θ to a position in j ∈ {0,1,2}.
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against its desire to over-retain or over-promote to attenuate the positive signalling effect
of retention and promotions. We first establish that over-retention is optimal for the firm
except in a knife-edge case where the optimal policy retains workers efficiently.

Theorem 1. An optimal HR policy exists with efficient retention if and only if the efficient

retention threshold θ 0 satisfies

V ′
2(E[θ |θ ≥ θ 0])≥V ′

1(θ 0) (5)

and

V2(E[θ |θ ≥ θ 0]) =V ′
2(E[θ |θ ≥ θ 0])(E[θ |θ ≥ θ 0]−θ 0). (6)

Moreover, under-retention is never optimal. Therefore, if conditions (5) or (6) do not hold,

then any optimal HR policy exhibits over-retention.

Theorem 1 says that an optimal HR policy—whether monotone or not—exhibits over-
retention. We emphasise that conditions (5) and (6) hold only in knife-edge cases.21 Thus,
we interpret Theorem 1 as saying that we should generally expect firms to over-retain work-
ers. The underlying intuition for over-retention is most clearly demonstrated by considering
the firm’s expected payoff under a feasible distribution G that can be implemented with a
deterministic monotone HR policy. Recall that deterministic monotone HR policies are
characterised by a retention threshold, θ0, and a promotion threshold, θ1, so that the firm’s
expected payoff is given by:

V̂ (θ0,θ1) =
∫

θ1

θ0

(
v1 (θ)− c

(
E
[
θ̃ |θ0 < θ̃ < θ1

]))
f (θ)dθ (7)

+
∫ 1

θ1

(
v2 (θ)− c

(
E
[
θ̃ |θ̃ ≥ θ1

]))
f (θ)dθ ,

where the first and second lines are the firm’s profits from workers in position j = 1 and 2,
respectively.

Let us consider whether the firm would find it optimal to choose the efficient retention
threshold θ 0 by analysing the derivative of V̂ with respect to θ0 evaluated at the efficient
retention cutoff θ 0 while assuming that E1 ≡ E[θ |θ 0 < θ < θ1] ∈ (θ 0,θ 1) (which can be

21In words, the conditions require the tangent to V at E[θ |θ ≥ θ 0] to have a slope greater than V ′
1(θ 0) and

to cut the x-axis at exactly θ 0.
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shown to hold in the relevant cases). Leibniz rule gives that

dV̂ (·)
dθ0

∣∣∣∣∣
θ=θ 0

=− f
(
θ 0
)(

v1
(
θ 0
)
− c(E1)

)
−
∫

θ1

θ 0

c′ (E1)
dE1

dθ0
f (θ)dθ . (8)

Because the firm must pay c(E1) to retain a type-θ 0 worker that produces v1(θ 0) in output,
the first term in (8) is the direct effect on the firm’s profit from letting go of a type-θ 0

worker. The second term reflects the signalling effect of a change in the retention threshold:
c′(E1)

dE1
dθ0

reflects the change in the wage rate the firm must pay to retain each worker in
position j = 1, and the integral gives the change in the wage cost associated with all workers
assigned to position j = 1.

We note that the first term in (8) is strictly positive because the labour market’s will-
ingness to pay for a worker is increasing in the worker’s type (i.e., c is strictly increasing)
and a type-θ 0 worker, by definition, is equally valued by the firm and the labour market
(i.e., c(θ 0) = v1(θ 0)). Thus, letting go of a type-θ 0 worker allows the firm to avoid the
loss associated with retaining such a worker. However, doing so also increases the wage
cost for all other workers in position j = 1 due to the signalling effect—an increase in the
retention threshold leads to an increase in the posterior mean of workers’ types in position
j = 1 (dE1

dθ0
> 0), which, in turn, increases the labour market’s willingness to pay for workers

in position j = 1 (c′(E1)> 0). Thus, a priori the sign of the derivative seems ambiguous.
However, it turns out that the convexity of c (which arises from the fact that θ -outside

firm’s technology is more sensitive to workers’ abilities when θ is higher) implies that the
signalling effect dominates the direct effect on firm profits. To see this, we rewrite the
derivative (8) as follows:

dV̂ (·)
dθ0

∣∣∣∣∣
θ=θ 0

= f
(
θ 0
)(

E1 −θ 0
)
(

c(E1)− c
(
θ 0
)

E1 −θ 0
− c′ (E1)

)
< 0. (9)

As can be seen from Figure 2, the derivative is strictly negative because the strict convexity
of c′ implies the difference inside the last parentheses is strictly negative. In words, the
signalling effect dominates the direct effect when c(·) is strictly convex because the wage
cost for the firm is then “more” sensitive to changes in the posterior mean E1.22 We there-

22Observe that the term c(E1)−c(θ 0)

E1−θ 0
is the marginal product of a hypothetical outside firm with technology,

c̃(·), such that (i) type-θ 0 worker’s output is the same as that of the firm, i.e., c̃(θ 0) = v1(θ 0), and (ii) the
average productivity of workers in position j = 1, c̃(E1), equals c(E1). For the signalling effect to domin-
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fore conclude that choosing the efficient retention threshold is suboptimal for the firm and
the firm would, in this case, strictly prefer to over-retain workers by setting the retention
threshold to be strictly below the efficient one θ 0.

Figure 2: Over-retention.
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E1→ω0

slope: c→(E1)

v1(ω0) = c(ω0)
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In proving Theorem 1, we also show that there is over-retention even when the optimal
G is associated with (θ0,θ1,E2) for which E2 < E[θ |θ ≥ θ1]. In this case, the effect of
changing the retention threshold is more complex, because changing the retention threshold
also affects the mass of workers in position j = 2.23 Nevertheless, the same forces described
above lead the firm to over-retain workers.

We now ask: Does the firm’s optimal promotion decision also always lead to over-
promotion? Even if we focus on optimal monotone policies, it turns out that the nature of
the inefficiency associated with promotion decisions is more nuanced.

Theorem 2. An optimal deterministic monotone HR policy exhibits either over-promotion

or under-promotion but not both. If no deterministic monotone HR policy is optimal, then

an optimal monotone HR policy could exhibit only over-promotion, only under-promotion,

or both.

ate, it must be the case that E1-outside firm’s technology exhibits greater marginal product than that of the
hypothetical outside firm.

23To see why, in general, the firm’s expected payoff from a feasible G associated with (θ0,θ1,E2) is

(1−F (θ0)) [V (E [θ |θ0 < θ < θ1])α (θ0,θ1,E2)+V (E [θ |θ ≥ θ1]) (1−α (θ0,θ1,E2))] ,

where α(θ0,θ1,E2) represents the proportion of retained workers who are assigned to position j = 1. Hence,
changing the retention threshold θ0 now also affects the mass of workers who are retained in position j = 2.
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Once again, the intuition for why the results differ between retention and promotion
decisions is most clear when considering feasible G that can be implemented with a de-
terministic monotone HR policy. Thus, consider again the firm’s expected payoff from
such a G given by equation (7). Observe that a change in the always-promote threshold θ1

affects workers in positions j = 1 and 2. In contrast, changing the retention threshold only
affects workers in position j = 1 because the firm’s average profit-per-worker from letting
go of workers is unaffected by its retention decisions—it always equals zero.

Let us consider the derivative of V̂ with respect to θ1 evaluated at the efficient promotion
threshold θ 1 assuming that E1 ≡ E[θ |θ0 < θ < θ 1] ∈ (θ 0,θ 1) and E2 ≡ E[θ |θ ≥ θ 1] ∈
(θ 1,1) (which can be shown to hold in the relevant cases):

dV̂ (·)
dθ1

∣∣∣∣∣
θ=θ 1

= f
(
θ 1
)(

θ 1 −E1
)
(

v1
(
θ 1
)
− c(E1)

θ 1 −E1
− c′ (E1)

)
(10)

+ f
(
θ 1
)(

E2 −θ 1
)
(

c(E2)− v2
(
θ 1
)

E2 −θ 1
− c′ (E2)

)
,

where the first line represents the direct and signalling effects of a change in the promotion
threshold θ 1 on workers in position j = 1, and the second line represents the direct and
signalling effects on workers in position j = 2. By exactly the same argument as in the case
of retention, the second line is negative. In contrast, the first term is strictly positive. To
see this, observe that v1(θ 1)−c(E1)

θ 1−E1
> c(θ 1)−c(E1)

θ 1−E1
because it is efficient for the firm to assign

position j = 1 to workers whose types lie in [θ 0,θ 1]. Convexity of c, in turn, implies that
the first line is strictly positive.24 Thus, whether the firm prefers to over- or under-promote
is ambiguous.

When no deterministic monotone HR policy is optimal, the firm must randomise at
least some assignment of types of workers to positions. However, because many monotone
HR policies can induce the same distribution of posterior means, it is difficult to char-
acterise when there will be over- and/or under-promotion. In contrast, when a determin-
istic monotone HR policy is optimal, it is unique. In the appendix, we provide the exact
(cumbersome-to-define) conditions under which there is over- or under-promotion in the
case where a deterministic monotone HR policy is optimal. We show that there are two
conditions under which over-promotion can arise. These two conditions roughly say the

24We note that convexity of c is not necessary to ensure that the first term is strictly positive. Indeed, the
first term would be strictly positive even if c was affine on [E1,θ 1].
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following.

Condition A There is a sufficient mass of workers with very high abilities (i.e., θ close to
one) so that promoting according to the efficient threshold results in wage costs that
are "too high" for the firm; or

Condition B Condition A does not hold, but there is a sufficient mass of workers with
abilities close to but below the efficient promotion threshold θ 1, so that the effect of
lowering the threshold on the profits from workers in position j = 1 is smaller.

Comparative statics To avoid ambiguity, we focus on the case in which an optimal
monotone HR policy is deterministic so that the optimal monotone HR policy either ex-
hibits over-promotion or under-promotion but not both. We also focus on changes that do
not affect the levels of efficient retention and promotion thresholds.

We say that tuples of primitives (v2,c,F) and (ṽ2, c̃, F̃) (satisfying our assumptions) are
comparable if condition A holds under both set of primitives and they both imply common
efficient retention and promotion thresholds. Given such comparable tuples of primitives,
we say that over-promotion is more likely under (v2,c,F) than under (ṽ2, c̃, F̃) if the change
can result in a switch from the optimal monotone HR policy exhibiting over-promotion to
under-promotion but not the other way around.25

We first contemplate a reduction in the marginal product of the E2-outside firm, c′(E2),
which determines the strength of the signalling effect of changing the promotion threshold
from the efficient one. To isolate this signalling effect, we ensure c(E2) and c(1) remain
unchanged so that the change does not directly alter the wage cost for the firm from pro-
moting efficiently, and we also leave c unchanged on [0,θ 1] to avoid directly affecting the
firm’s choice of retention threshold.

Proposition 1. Suppose no deterministic monotone HR policy is optimal. Consider com-

parable (v2,c,F) and (v2, c̃,F) such that c(θ) = c̃(θ) for θ ∈ [0,θ 1]∪ {E2,1}. Then,

over-promotion is more likely under (v2, c̃,F) than under (v2,c,F) if c̃′(E2)< c′(E2).

25More concretely, we say that over-promotion is more likely under (v2,c,F) than under (ṽ2, c̃, F̃) if the
derivative dV̂

dθ1
evaluated at (θ−1,θ 1) is lower under (v,c,F) than under (ṽ2, c̃, F̃), where θ−1 is such that the

first-order condition with respect to θ0 holds. That is, dV̂
dθ0

evaluated at (θ−1,θ 1) is zero if θ−1 > 0 or strictly
negative if θ−1 = 0. Whether there is over- or under-promotion also depends on whether condition A holds
for reasons unrelated to the sign of dV̂

dθ1
evaluated at (θ−1,θ 1). We therefore only consider changes in the

primitives that do not affect whether condition A holds.
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In words, the above proposition sys over-promotion is more likely with a lower marginal
product of E2-outside firm. At first sight, this result may seem surprising because a lower
marginal product of E2-outside firm implies a smaller reduction in wage cost with respect
to workers in position j = 2 due to the signalling effect of over-promotion. However, notice
that the choice of the promotion threshold also affects the choice of the retention threshold,
and the latter alters the firm’s profits from workers in position j = 1 by affecting the average
productivity of such workers. It turns out that, when taking both effects into account, the
firm is more likely to over-promote when the marginal product of E2-outside firm is lower.

To demonstrate that the incentive to over- or unde-promote is largely driven by the
technologies of the outside firm, we also consider a change in k2 (with a corresponding
change in s2 to ensure that the efficient promotion threshold remains unchanged).

Proposition 2. Suppose no deterministic monotone HR policy is optimal. Consider com-

parable (v2,c,F) and (ṽ2,c,F). Then, over-promotion is no more likely under (ṽ2,c,F)

than under (v2,c,F).

We interpret Propositions 1 and 2 as reinforcing the insight that whether there is over-
promotion or under-promotion is driven by the technologies of outside firms, rather than
the technology of the incumbent employer.

We can also use our model to study how the nature of inefficiency associated with op-
timal HR policies changes when the workers have different characteristics that are publicly
observable; e.g., workers may have different education levels or professional qualifications.
To that end, suppose there are two sets of workers and their prior distribution of types is
ordered according to their likelihood ratios.26 We show that over-promotion is more likely
for the set of workers whose distribution dominates another in the likelihood-ratio order.

Proposition 3. Suppose no deterministic monotone HR policy is optimal. Consider com-

parable (v2,c,F) and (v2,c, F̃). Then, over-promotion is more likely under (v2,c, F̃) than

under (v2,c,F) if F dominates F̃ in the likelihood ratio order.

For example, to the extent that education levels are publicly observable, over-promotion
may be more likely among workers who are less educated.

26Recall that, given two absolutely continuous CDFs with support [0,1], F and H, the CDF H dominates
F in the likelihood ratio order if and only if h(·)

f (·) is increasing.
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4 Relaxing the firm’s commitment power

As described in the introduction, there are a number of ways in which the firm can com-
mit HR policies, e.g., by adopting a rule-based HR department to make its retention and
promotion decisions (Milgrom and Roberts, 1988) or by establishing reputation (Waldman,
2003). Alternatively, the information design game we use to solve the firm’s original prob-
lem itself represents a way for the firm to implement optimal HR policies. That is, by
having a clear career path for workers in which progress depends on the workers passing
certain milestones (or tests), the firm can implement optimal HR policies. Indeed, in many
industries, firms disclose to potential workers how they can progress through the ranks.27

Alternatively, the firm could also implement the optimal information structure using “in-
direct contracts” à la Deb, Pai and Said (2023).28 In this light, the resistance from HR
departments that line managers often face in trying to get their managees promoted “faster”
can be viewed as an optimal response for the firm to manipulate the signalling effects of
promotion. Nevertheless one may wonder: To what extent do our results depend on the
firm’s ability to commit?

To further demonstrate how else the firm can implement optimal HR policies, we con-
sider the case in which the firm lacks the power to commit to HR policies (i.e., it can only
implement incentive-compatible HR policies), but the labour market can observe the dis-
tribution of positions held by its workers after it has assigned them. That is, in addition to
observing the firm’s choice of HR policy ϕ and the position of the workers j ∼ ϕ(·|θ), the
labour market also observes the distribution of positions after the firm has made its reten-
tion and promotion decisions. Firms sometimes disclose such information voluntarily,29 or
disclose them as mandated by accounting rules or laws,30 alternatively, they are available
publicly through websites such as LinkedIn or through services that provide intelligence

27Career fairs at colleges and univer are ripe with employers explaining how graduates can expect to
progress through the rank in the company.

28The Principal, the Agent, and the Receiver, in their setting, correspond to the firm, a line manager, and
the labour market in our setting, where the line manager is an agent of the firm who is able to observe the
workers’ types. We would add to the set-up of Deb, Pai and Said (2023) that the firm is able to assign
positions once it has gathered information about workers from the line manager.

29For example, certain types of companies and institutions, such as economic consultancies and academic
departments, provide a public list of their staff in various positions.

30For example, in the UK, the Companies Act 2006 (section 411) specifies that firms above certain size
“must also disclose the average number of persons within each category of persons so employed.” Some di-
versity, equity and inclusion reporting requirements stipulate companies to disclose demographic information
about their employees (e.g., The European Union’s Directive 2014/95/EU).
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about HR structures of companies.31

Importantly, public knowledge of the distribution of assigned positions effectively al-
lows the market can detect (and respond to) deviations by the firm from its stated HR policy,
ϕ , if deviations result in a distribution of positions that is consistent with ϕ . Then, follow-
ing the arguments from Lin and Liu (2024), it follows that the firm is able to effectively
commit to HR policies that result in the same marginal distribution of messages as that of
the announced one.

To state the firm’s problem when the firm has this partial commitment power, let Ψ :=
(∆({0,1,2}))Θ denote the set of HR policies and let D(ϕ) denote the set of HR policies
that have the same marginal distribution as ϕ ∈ Ψ; i.e.,

D(ϕ) :=
{

ϕ
′ ∈ Ψ :

∫

Θ

ϕ
′ (·|θ)dF (θ) =

∫

Θ

ϕ (·|θ)dF (θ)

}
.

The firm’s problem is to choose an HR policy that maximises its ex ante expected payoff:

max
ϕ∈Ψ

∫

Θ

2

∑
j=1

[
v j (θ)− c

(
Eϕ

[
θ̃ | j
])]

ϕ ( j|θ)dF (θ) (11)

s.t. ϕ ∈ argmax
ϕ ′∈D(ϕ)

∫

Θ

2

∑
j=1

[
v j (θ)− c

(
Eϕ

[
θ̃ | j
])]

ϕ
′ ( j|θ)dF (θ) . (12)

The constraint (12), which we refer to as the firm’s credibility constraint, ensures that the
firm, after announcing that it will follow an HR policy ϕ , would not deviate to some other
HR policy that has the same marginal distribution of positions when the labour market uses
ϕ to update beliefs about workers. We say that an HR policy ϕ is credible if ϕ satisfies the
credibility constraint.

We first show that, in solving (11), we can restrict attention to deterministic and mono-
tone HR policies.

Lemma 3. An HR policy is credible if and only if it is deterministic and monotone.

Note that an HR policy ϕ that is both deterministic and monotone is a simple threshold
strategy in which every type up to some threshold θ0 is let go, every type above some
threshold θ1 ≥ θ0 is promoted, and every type in between (θ0,θ1) is retained but not pro-
moted. Thus, Lemma 7 simplifies the problem (2) to one of finding optimal retention and

31For example, companies such as Crayon collect “Competitive Intelligence” to “provide the most com-
plete picture of what your competitors are up to.”
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promotion thresholds. Using this simplification, we prove that the nature of inefficiency
remains unchanged.

Proposition 4. Any HR policy ϕ∗ that solves (11) is a threshold policy with retention and

promotion thresholds, θ ∗
0 and θ ∗

1 ≥ θ ∗
0 respectively. In addition, ϕ∗ exhibits over-retention,

and it may exhibit over- or under-promotion but not both.

Because an optimal HR policy might require randomisation, there can be a gap between
the full and partial commitment power. However, the following result establishes that ran-
domisation is the sole source of this gap.

Proposition 5. A solution G∗ to the firm’s information design problem (3) can be imple-

mented under partial commitment if and only if there does not exist a tuple (θ b
0 ,E

b
1 ,E

b
2)

with θ b
0 ≤ Eb

1 ≤ Eb
2 such that:

(i) c(Eb
j )− v j(θ

b
0 ) = c′(Eb

j )(E
b
j −θ b

0 ) for j = {1,2};

(ii) k2 − k1 = c′(Eb
2)− c′(Eb

1); and

(iii) Eb
1 ≤ E[θ |θ > θ b

0 ]< Eb
2 < E[θ |θ ≥ θ b

1 ].

The existence of a tuple (θ b
0 ,E

b
1 ,E

b
2) that satisfies the conditions of the above pro-

position implies the firm’s information design problem is solved by a G associated with
(θ b

0 ,θ
b
1 ,E

b
2), where θ b

1 satisfies E[θ |θ b
0 < θ < θ b

1 ] = Eb
1 . Moreover, when such a tuple

does not exist, the firm’s information design problem is solved by a G associated with a
deterministic monotone HR policy. Since any deterministic monotone HR policy is cred-
ible, it follows that the ability to partially commit is sufficient for the firm to attain the
full-commitment payoff.

To better understand when the firm benefits from randomisation, let us consider each
condition in Proposition 5 in turn. For each j ∈ {1,2}, condition (i) guarantees that, if
E[θ |θ ≥ θ b

0 ] = Eb
j , the threshold strategy in which the firm assigns position j if and only

if workers’ types are above θ b
0 maximises the firm’s ex ante payoff from choosing among

HR policies that assign either position 0 or j to each type of worker.32 Thus, Eb
j can be

interpreted as the average type of retained workers induced by such an HR policy. To
understand condition (ii), recall that c′(E) represents the marginal product of the E-outside

32To see this, recall the derivative of firm’s payoff with respect to the retention threshold θ0 from a feasible
G associated with E2 = E[θ |θ ≥ θ1], (8). Observe that letting θ1 = 1 and setting the derivative equal to zero
gives condition (i) for each j ∈ {1,2}.
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firm. Now, for each j ∈ {1,2}, denote the group of workers who would be optimally
assigned to position j over being let go as I j ⊆ Θ. Then, condition (ii) requires that the firm
and the labour market value the additional marginal product of type of workers in group
I2 over group I1 to be the same. Note that conditions (i) and (ii) are conditions on v1, v2

and c.33 The last condition (iii) is a restriction on the prior F that ensures that the firm can
induce distribution of posterior means G∗ using some information structure. Roughly, it
requires a sufficient mass of workers who are “good enough” so that the firm can reduce
the wage cost of workers in position j = 2 by sometimes promoting workers who are not
“good enough.”

Because the HR policy ϕ∗ that solves the firm’s problem under partial commitment,
(11), exhibits over-retention (i.e., θ ∗

0 < θ 0), the firm’s profits from some types of junior
workers are strictly negative under ϕ∗. In fact, v1(θ)− c(E[θ |θ ∗

0 < θ < θ ∗
1 ]) < 0 for all

θ ∈ (θ ∗
0 ,

c(E[θ |θ∗
0<θ<θ∗

1 ])−s1
k1

) ⊇ (θ ∗
0 ,θ 1]. Thus, assigning j = 1 to workers whose types

are in (θ ∗
0 ,

c(E[θ |θ∗
0<θ<θ∗

1 ])−s1
k1

) would not be sequentially rational if the firm had (privately)
observed its workers’ types before assigning positions. An analogous argument means that
over-promoting workers would not be sequentially rational for such a firm either. Thus,
some ability to commit to HR policies (or to commit to a Blackwell experiment in the
information design game) is needed to ensure that the trade-off that we study is nontrivial.

5 Discussions

5.1 Optimal HR policies

We focus on the nature of inefficiency associated with the firm’s optimal monotone HR
policies, which do not require us to characterise the firm’s optimal HR policy. Nevertheless,
in the appendix, we provide a full characterisation of the firm’s optimal monotone HR
policies.

5.2 Job design

An alternative way to attenuate the positive signalling effect of promotion is to combine the
jobs associated with positions 1 and 2 into one role, say to position j = m (for merged pos-

33In the appendix, we show that a tuple (θ b
0 ,E

b
1 ,E

b
2 ) satisfying conditions (i) and (ii) of Proposition 5 if

and only if c(·) is sufficiently convex but not too convex. In other words, whether the firm can benefit from
randomisation depends on the marginal product of workers in outside firms.
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ition) as such merging of positions prevents the labour market from distinguishing workers
based on whether they are retained as a junior or promoted to be a senior. However, design-
ing jobs in this manner would presumably be inefficient for the firm,34 and we capture this
inefficiency by assuming that a type-θ worker’s output in the merged position is a weighted
average of v1 and v2; i.e.,

vm (θ) = αv1 (θ)+(1−α)v2 (θ) ,

where α ∈ (0,1).35 However, the firm cannot benefit from merging jobs in this manner. To
see this, define Vm(E) := [vm(E)−c(E)]+ as the firm’s value function G∗ denote a solution
to the firm’s problem when merging the two positions. But because Vm ≤V , we have

∫

Θ

Vm (E)dG∗ (E)≤
∫

Θ

V (E)dG∗ (E)

≤ max
G∈MPC(F)

∫

Θ

V (E)dG(E) = V̂ ∗.

Hence, the firm cannot do better by merging positions. Thus, while the firm benefits from
obfuscating workers’ productivity to the labour market by misallocating across positions,
it prefers to specialise workers into positions.

5.3 Vacuous job titles

In the National Longitudinal Survey of Youth in 1990, Pergamit and Veum (1999) finds
that approximately a third of those who are promoted “continued to perform basically the
same duties as before.” 36 While we would interpret such a finding as suggestive of the fact
that firms do indeed over-promote workers, it is also possible that the finding represents
evidence of a disconnect in the relationship between job titles and job responsibilities.

In the information design game that we used to solve the firm’s original problem, the
firm can provide more information using messages (m ∈ M) than possible via the assign-
ment of positions. However, we show that the firm has no incentive to do so; in our model,
the firm sends at most one message for each position.

34We note that the firm benefits from the ability to secretly assign positions j ∈ {1,2} to attenuate the
signalling effect without suffering a cost in terms of worker output.

35The results also hold when α depends continuously on θ .
36Somewhat more recently, Kosteas (2011) reports a similar finding based on the 1996-2006 waves of the

National Longitudinal Surveys of Youth 1979 cohort.
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What drives this result is the fact that our set of assumptions implies that the firm’s
value function, V , is not strictly convex on any nondegenerate interval of Θ.37 If we were
to make the alternative assumption that the set of production functions associated with
outside firms is finite, then c and, consequently, V will be piecewise affine (but still convex).
Consequently, in case the firm finds it optimal to induce posterior means in an affine region
of V , it would be indifferent between not revealing and (partially or) fully revealing types of
workers in the affine region. To the extent that there are other rationales for job titles (e.g.,
workers value job titles per se), the firm may give different job titles (i.e., send different
m’s) to workers who have the same responsibilities (i.e., assigned the same j).

5.4 Labour market that values the workers more

In our main setup, we assumed that it is efficient for the current employer of the firm to
retain the most productive workers; i.e., v2(1)≥ c(1). However, it is also possible that high-
θ workers should be employed by other firms that value them more; i.e., v2(1) < c(1). In
this case, define θ 2 := max{θ ∈ Θ : v2(θ) = c(θ)} as the efficient threshold for letting
go of workers rather than retaining them in position j = 2. Then, when the prior mean
about workers’ types is sufficiently high, it can now be optimal for the firm to adopt a
deterministic HR policy characterised by a retention threshold θ ∗

2 ≥ θ 2 in which all workers
of type θ < θ ∗

2 are retained and assigned to position j = 2 and all workers of type θ ≥ θ ∗
2

are let go.

5.5 Beyond two jobs

Our approach to solving for the optimal HR policies extends easily to cases in which the
firm can assign workers to more positions. We note that, for additional positions (inter-
preted as more senior positions in which workers are potentially more roductive than ex-
isting ones) to matter, they must have a lower intercept and a greater slope that existing
jobs.38 However, the tradeoffs involved between any two consecutive positions would re-
semble that between j = 1 and 2 as we describe above. Moreover, additional care must
be taken to determine whether the firm would find it optimal to assign workers to each
position.

37Recall that V is a continuous function that is constant and equals zero on [0,θ 0], positive and strictly
concave on [θ 0,θ 1] and [θ 1,1] with a convex kink at θ 1.

38As Costa (1988) notes, otherwise, the firm will never assign workers to the additional jobs.
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5.6 Counteroffers

To simplify exposition and to be consistent with Waldman (1984), we do not explicitly
model the wage-setting game and assume that the firm commits to offering a wage to each
worker so as to ensure that the worker cannot obtain a strictly higher wage from other
firms in the labour market. An alternative interpretation of this assumption is that the firm
is always willing to make a counteroffer up to the average output of workers in position
j, v j(Eϕ [θ | j]) if an external firm were to make a poaching offer of say w to a worker in
position j ∈ {1,2}. This assumption is reasonable in the information design game as the
firm learns no more information about the worker than the market. However, to the extent
that the firm learns the workers’ types before assigning positions to them, the firm may be
tempted to let go of workers who are worth less than w to the firm; i.e., let go of workers
in position j whose types θ is such that v j(θ) ≤ w. This type of counteroffer behaviour
by the firm introduces an adverse selection problem for those attempting to poach workers
from the firm (Greenwald, 1986; Gibbons and Katz, 1991). While a detailed analysis of
the model with adverse selection is beyond the scope of this paper, we note that the firm
benefits from letting go of workers strategically because doing so lowers the poaching
offers the labour market is willing to make for the workers.

5.7 Relation with Waldman (1984) and Gibbons and Katz (1991)

Waldman (1984) studies how the firm’s decision to promote or not promote a worker affects
the wage it must pay in order to retain workers. In Waldman (1984), the firm assigns job
j ∈ {1,2} to the worker, where the firm’s direct payoff from assigning job j to a type-
θ worker is given by (s1,k1) = (x(1+ s),0) and (s2,k2) = (0,1+ s) for some s > 0 and
x ∈ (E[θ ],1]. The labour market’s value for a type-θ worker is simply c(θ) := θ . Thus, the
firm’s value function in Waldman (1984) is given by

V (E) = (1+ s)max{E,x}−E =




(1+ s)x−θ if θ < θ 1

sθ if θ ≥ θ 1

, (13)

where θ 1 = x. Observe that V (·) > 0 so that the efficient outcome is for the incumbent
firm to retain all workers. Because V is convex, a full revelation is optimal for the firm.
However, because V is piecewise linear, the firm can attain the optimal payoff by simply
setting the promotion threshold to be θ 1. Thus, the optimal promotion rule in Waldman
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(1984) is efficient and does not exhibit under- or over-promotion.
Gibbons and Katz (1991) study a model that can capture both the signalling effect of

retention à la Waldman (1984) and the adverse-selection effect of retention à la Greenwald
(1986). The firm decides whether to retain or let go of the worker. The firm’s payoffs from
assigning each position are characterised, respectively, by (s0,k0) = (0,0) and (s1,k1) =

(s,1), where 0 < s < E[θ ]. The labour market’s value for a type-θ worker is again c(θ) :=
θ . Hence, the firm’s value function is simply V (E) = s. Observe that it is always efficient
for the firm to retain workers of all types.

Observe that both Waldman (1984) and Gibbons and Katz (1991) assume a common
production technology for outside firms. The analysis here, therefore, highlights that when
the firm can commit to HR policies, inefficiencies in HR policies arise from the fact that
heterogeneity in the production technologies of outside firms, which, in turn, leads to con-
vexity in the workers’ outside options.
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A Appendix

A.1 Proof of Lemma 1

Lemma 1. The value of the firm’s problem, (2), in the original game equals the value of

the firm’s problem, (3), in the related game; i.e., V ∗ = V̂ ∗. Moreover, if G∗ solves (3), then

there exists an HR policy ϕ∗ ∈ Ψ that solves the firm’s original problem, (2), and induces

G∗ as the distribution of posterior means.

Proof. We first show that V̂ ∗ ≤ V ∗. Suppose Ĝ∗ ∈ MPC(F) solves the firm’s information
design problem, (3). Define

Θ0 :=
{

E ∈ supp
(

Ĝ∗
)

: max
j∈{1,2}

v j (E)≤ c(E)
}
,

Θ1 :=
{

E ∈ supp
(

Ĝ∗
)
\Θ0 : v2 (E)≤ v1 (E)

}
,

Θ2 :=
{

E ∈ supp
(

Ĝ∗
)
\Θ0 : v1 (E)< v2 (E)

}
,

and let

E∗
j :=

∫
Θ j

EdĜ∗ (E)

Ĝ∗ (Θ j
) ∀ j ∈ {0,1,2} .

By our choice of E∗
j ’s, there exists G∗ ∈ MPC(F) so that supp(G∗) = {E∗

0 ,E
∗
1 ,E

∗
2}. Then,

by construction, and the fact that v is affine and c is convex, we have

V̂ ∗ ≤
∫

Θ

V (E)dG∗ (E) =
2

∑
j=1

[
v j
(
E∗

j
)
− c
(
E∗

j
)]

G
({

E∗
j
})

.

Let π∗ ∈ Π denote an experiment with supp(π∗) = {m0,m1,m2} such that

Eπ∗
[
θ |m j

]
= E∗

j ∀ j ∈ {0,1,2} ,

30



which exists because G∗ ∈ MPC(F). Then,
∫

Θ
π∗(m j|θ)dF(θ) = G∗({E∗

j }) and so

V̂ ∗ ≤
2

∑
j=1

[
v j
(
E∗

j
)
− c
(
E∗

j
)]∫

Θ

π
∗ (m j|θ

)
dF (θ)

=
2

∑
j=1

[
s j + k j

∫
Θ

θπ∗ (m j|θ
)

dF (θ)
∫

Θ
π∗ (m j|θ

)
dF (θ)

− c
(
E∗

j
)
]∫

Θ

π
∗ (m j|θ

)
dF (θ)

=
∫

Θ

2

∑
j=1


s j + k jθ︸ ︷︷ ︸

=v j(θ)

− c
(
E∗

j
)

π

∗ (m j|θ
)

dF (θ)

≤ max
ϕ:Θ→∆{0,1,2}

∫

Θ

2

∑
j=1

[
v j (θ)− c

(
Eϕ [θ | j]

)]
ϕ ( j|θ)dF (θ) =V ∗,

where the last inequality follows because we can choose ϕ∗ : Θ → ∆{0,1,2} as

ϕ
∗ ( j|·) = π

∗ (m j|·
)
∀ j ∈ {0,1,2} (14)

so that Eϕ∗[θ | j] = E∗
j .

We now show that V ∗ ≤ V̂ ∗. Let ϕ∗ solve the firm’s original problem, (2), and denote
E∗

j := Eϕ∗ [θ | j]. Let {m0,m1,m2} be a set of three distinct elements of M and construct
a Blackwell experiment π∗ ∈ Π via (14). Let us first show that v j(E∗

j )− c(E∗
j ) ≥ 0 for

j ∈ {1,2}. By way of contradiction, suppose for ĵ ∈ {1,2}, v ĵ(E
∗
ĵ
)− c(E∗

ĵ
)< 0. Consider

ϕ̂ : θ → R such that

ϕ̂
(

j′|·
)

:=





ϕ∗ (0|·)+ϕ∗
(

ĵ|·
)

if j′ = 0,

0 if j′ = ĵ,

ϕ∗ ( j′|·) otherwise.

Letting ĵ′ ∈ {1,2} with ĵ′ ̸= ĵ, we have

V (ϕ̂)−V (ϕ∗) =
∫

θ

2

∑
j=1

[
v j (θ)− c

(
E∗

j
)]
[ϕ̂ ( j|θ)−ϕ

∗ ( j|θ)]dF (θ)

=−
∫

Θ

[
v ĵ (θ)− c

(
E∗

ĵ

)]
ϕ
∗
(

ĵ|θ
)

dF (θ)> 0,
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which contradicts the optimality of ϕ∗. Letting π∗(m j) :=
∫

Θ
π∗(m j|θ)dF(θ), we have

V ∗ =
∫

Θ

2

∑
j=1

[
v j (θ)− c

(
E∗

j
)]

ϕ
∗ ( j|θ)dF (θ)

= ∑
j=1,2

[
v j
(
E∗

j
)
− c
(
E∗

j
)]

π
∗ (m j

)

≤ ∑
j=1,2

[
max

j′∈{1,2}
v j′
(
E∗

j
)
− c
(
E∗

j
)]

π
∗ (m j

)

≤ max
G∈MPC(F)

∫

Θ

V (E)dG(E) = V̂ ∗,

where the second follows from the fact that π∗ induces G∗ ∈MPC(F) such that supp(G∗) =

{E∗
0 ,E

∗
1 ,E

∗
2}. ■

A.2 Proof of Lemma 2

We first summarise results from Dworczak and Martini (2019) and Arieli et al. (2023) that
are relevant in our proofs for convenience.

The following of follows directly from theorems 1 and 2 of Dworczak and Martini
(2019).

Fact 1 (Dworczak and Martini, 2019). A CDF G is a solution to the firm’s information

design problem, (3), if there exists a function p : Θ → R such that

p ≥V and p is convex, (15)

supp(G)⊆ {E ∈ Θ : V (E) = p(E)} , (16)
∫

Θ

p(E)dG(E) =
∫

Θ

p(θ)dF (θ) , (17)

G ∈ MPC(F) . (18)

Moreover, if V is Lipschitz continuous, then the converse also holds; i.e., if a CDF G solves

(3), then there exists a function p : Θ → R that satisfies (15)–(18).

Given a pair (G, p) that satisfies (15)–(18), we refer to p as a support function of G.39

39Dworczak and Martini (2019) refers to p instead as a price function for reasons that are not relevant for
our paper.
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Following Arieli et al. (2023), we call a mean-preserving contraction G of F , G ∈
MPC(F), a bi-pooling distribution (with respect to F) if G can be induced as a distribution
of posterior means by an information structure that, for some collection (indexed by I ) of
pairwise disjoint open intervals

⋃
I∈I I ⊆ Θ: (i) partitions Θ into

⋃
I∈I I and its comple-

ment; (ii) whenever θ ∈ ⋃I∈I I, the information structure reveals which interval the state
is in and provides an additional binary signal; and (iii) the sender fully reveals the state
whenever the state is in the complement of

⋃
I∈I I. If a nontrivial binary signal is provided

in an interval I ∈ I , we call the interval I a bi-pooling interval; if only a trivial binary
signal is provided, then we call I a pooling interval. We call an interval I ∈ I in which the
sender fully reveals the state a separating interval. If all intervals are pooling intervals, we
refer to G as a pooling distribution.

The following is a combination of Lemma 1, Theorem 1 and Proposition 3 in Arieli
et al. (2023).

Fact 2 (Arieli et al., 2023).

(i) A bi-pooling distribution G solves (3).

(ii) Suppose V is upper semicontinuous and there exists a collection of J ∈ N points

{θ j}J
j=−1, with 0 = θ−1 < θ 0 < · · · < θ J = 1, such that V is either concave or

convex in the interval (θ j−1,θ j) for every j ∈ {0,1, . . . ,J}. Let p : Θ → R denote

the support function of an optimal bi-pooling distribution G. Then, there exists a

collection of functions, {p j : [θ j−1,θ j]→R}J
j=0, where 0 = θ−1 < θ0 < .. . < θm = 1

for some m ≤ 2(J + 1)− 1,40 such that p|[θ j−1,θ j] = p j for all j ∈ {0,1, . . . ,J}, and

each p j satisfies exactly one of the following conditions:

(a) p j =V |[θ j−1,θ j];

(b) p j ≥V |[θ j−1,θ j], and p j is affine and tangential to V at E[θ |θ j−1 < θ < θ j]; or

(c) p j ≥V |[θ j−1,θ j], and p j affine and tangential to V at two distinct points E j and

E j such that

θ j−1 ≤ E j ≤ E
[
θ |θ j−1 < θ < θ j

]
≤ E j ≤ E

[
θ |θ ′

j−1 < θ < θ j
]
≤ θ j, (19)

where θ ′
j−1 is defined implicitly via E[θ |θ j−1 < θ < θ ′

j−1] = E j.
40While Proposition 3 in Arieli et al. (2023) states m ≤ 2(J+1) instead, the argument in their proof in fact

implies m ≤ 2(J+1)−1.
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For each of the cases (a) to (c), we call the interval [θ j−1,θ j] a separating, pooling and
bi-pooling interval, respectively. Moreover, in case [θ j−1,θ j] is a bi-pooling interval, we
refer to p j (extended to R) as the bi-tangent of V on the interval [θ j−1,θ j].

We first establish the necessary and sufficient conditions for V to have a bi-tangent on
[θ 0,1]. We note that, because V is constant and equals zero, V always has a bi-tangent on
any subinterval of [0,θ 0].)

Lemma 2. V has a bi-tangent on [θ 0,1] if and only if (i) tangent to V1 at θ 0 lies above V2

on [θ 0,1] and (ii) tangent to V2 at 1 lies above V1 on [θ 0,1]. Moreover, when it exists, the

bi-tangent is unique, and it is tangent to V at some E1 ∈ [θ 0,θ 1) and E2 ∈ [θ 1,1].

Recall cE(·) denotes the tangent to c at E. Then, condition (i) of Lemma 2 holds if and
only if

c(θ)− cθ 0 (θ)≥ v2 (θ)− v1 (θ) ∀θ ∈
[
θ 1,1

]
, (20)

where we note that v2(·)−v1(·)≥ 0 on [θ 1,1]. Condition (ii) of Lemma 2 holds if and only
if

v1 (θ)− v2 (θ)≥ c1 (θ)− c(θ) ∀θ ∈
[
θ 0,θ 1

]
, (21)

where we note that v1(·)− v2(·) ≥ 0 on [θ 0,θ 1]. The first condition requires c to exhibit
sufficient convexity while the second condition is a limit to how much convexity c can
exhibit. Thus, a bi-tangent exists whenever c is sufficiently convex but not too convex; in
other words, a bi-tangent exists whenever the increase in the marginal product of labour is
not too little or too much.

Lemma 3. There exists a feasible G∗ that solves the information design problem, (3); i.e.,

V̂ ∗ = max
(θ0,θ1,E2)

∫

Θ

V (E)dGθ0,θ1,E2 (θ) s.t. (θ0,θ1,E2) is feasible. (22)

Proof. By Fact 2(i), a bi-pooling G solves (3). Because V is continuous, linear on [θ−1 :=
0,θ 0], strictly convex on the intervals [θ 0,θ 1] and [θ 1,θ 2 := 1], and has convex kinks at θ 0

and θ 1, by Fact 2(ii), any bi-pooling interval can be found by identifying the bi-tangents of
V .

Consider first the case in which V has a bi-tangent on [θ 0,1]. By Lemma 2, bi-tangent is
unique and we denote it as V b(·). Let θ0 be such that V b(θ0) = 0. Given the assumptions on
V , θ b

0 < θ 0. Denote the two bi-tangency points as E1 ∈ [θ 0,θ 1) and E2 ∈ [θ 1,1]. If E1 and
E2 satisfy (19), then [θ b

0 ,1] is a bi-pooling interval. Since V is constant and equals zero on
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[0,θ 0], max{V b(·),0} is function satisfying (15)–(18). Moreover, G that can be supported
by such a p is associated with (θ0,θ1,E2), where θ1 satisfies E[θ |θ0 < θ < θ1] = E2; i.e.,
G is feasible.

If an optimal G is not bi-pooling (either because a bi-tangent does not exist or even if
it exists, the tangency points, E1 and E2, do not satisfy (19)), then G must be a pooling
distribution. By Fact 2(ii), a support function of an optimal distribution G, p : Θ → R, is a
concatenation of at most 5 affine functions; i.e., there exists a collection {p j : [θ j−1,θ j]→
R}4

j=0, where
0 = θ−1 < θ0 < θ 0 < θ1 < θ2 < θ 1 < θ3 < θ4 = 1, (23)

such that p|[θ j−1,θ j] = p j for each j ∈ {0,1, . . . ,4}. Moreover, each p j is such that either
p j = V |[θ j−1,θ j] and p j is convex (i.e., [θ j−1,θ j] is a separating interval), or p j ≥ V|[θ j−1,θ j ]

and p j is affine and tangent to V at E[θ |θ j−1 ≤ θ ≤ θ j] (i.e., [θ j−1,θ j] is a pooling interval).
Since V is convex (in fact, linear) on [0,θ 0], p0 must be a constant function equal to zero.
Furthermore, to ensure that p is convex and p ≥ V , p1 must be tangent to V at some E1 ∈
[θ 0,θ 1], and p4 must be tangent to V at some E2 ∈ [θ 1,1]. However, because V is strictly
concave on [θ 0,θ 1] and on [θ 1,1], and has a convex kink at θ 1, p2, if it exists, would lie
strictly above V ; contradicting that p2 is tangential to V on [θ1,θ2]. Moreover, any point in
which p3 is tangential to V would be a concave kink; contradicting the convexity of p. Thus,
it follows that p must be a concatenation of at most three affine functions. Moreover, any
G that is pooling that can be supported by such a p is associated with (θ0,θ1,E[θ |θ ≥ θ1])

and so feasible. ■

A.3 Optimal feasible G

As shown in Figure 3, for each j ∈ {1,2}, let po
j : Θ→R denote the smallest linear function

that exceeds Vj, and let Eo
j denote the smallest E ∈ Θ such that po

j(E) = Vj(E). Observe
that while po

2 ≥ po
1 implies maxV2 > maxV1, the converse is not true.
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Figure 3: po
j and Eo

j ’s.

1
0 ✓

V2(·)

V1(·)
ω1ω0

0 Eo
1

po
1(·)

po
2(·)

Eo
2

We first consider the case when po
2 ≥ po

1.

Proposition 6. Suppose po
2 ≥ po

1 and E[θ ] ≥ Eo
2 . Then, G = F solves the firm’s problem

and assigning all workers to position j = 2 is optimal.

Proof. Because V2 is concave on [Eo
2 ,1]⊆ [θ 1,1], then G = F (i.e., providing no informa-

tion) is optimal for the firm because it can be supported by p given by the tangent to V at
E[θ ]. Since E[θ ] ∈ [θ 1,1], the firm maximises its expected payoff by assigning all workers
to position j = 2. ■

Given a feasible G associated with (θ0,θ1,E2), we define the firm’s expected payoff as:

V̂ (θ0,θ1,E2) =
∫

Θ

V (E)dGθ0,θ1,E2 (θ)

= (1−F (θ0))
[
V (E [θ |θ0 < θ < θ1])αθ0,θ1,E2 +V (E2)

(
1−αθ0,θ1,E1

)]
,

where

αθ0,θ1,E2 :=





0 if θ1 = 1 and E2 = E [θ |θ > θ0] ,

E2−E[θ |θ>θ0]
E2−E[θ |θ0<θ<θ1]

otherwise.

The problem for the firm now, (4), is to maximise V̂ with respect to (θ0,θ1,E2) among
all feasible tuples. Since V̂ is differentiable, a necessary condition for optimality is that
(θ0,θ1,E2) satisfies the first-order conditions (while accounting for boundary solutions).
We establish sufficiency by constructing the support function for G associated with (θ0,θ1,E2)

as an upper envelope of tangents to V̂ at E[θ |θ0 < θ < θ1] and E2, while imposing an addi-
tional condition to ensure that the support function is convex. We say that a feasible tuple
is nondegenerate if it is not associated with F .
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Lemma 4. A feasible nondegenerate tuple (θ ∗
0 ,θ

∗
1 ,E

∗
2) solves the firm’s problem, (4), if and

only if it satisfies the first-order conditions and V ′(E[θ |θ ≥ θ ∗
1 ])≥V ′(E[θ |θ ∗

0 < θ < θ ∗
1 ]).

Proof. The idea is to construct a supporting function p∗ that supports G(θ∗
0 ,θ

∗
1 ,E

∗
2 )

using the
first-order conditions to (4). Then, by Fact 2, it would follow that (θ ∗

0 ,θ
∗
1 ,E

∗
2) must be

optimal. To that end, let us first fix θ0 ∈ (0,θ 0) and θ1 ∈ (θ 0,1) and solve

max
E2∈Θ

V̂ (θ0,θ1,E2) s.t. E [θ |θ > θ0]≤ E2 ≤E [θ |θ ≥ θ1].

We denote the maximiser as E∗
2(θ0,θ1). The derivative of the objective with respect to E2

is

dV̂ (·)
dE2

= (1−F (θ0))
(
1−αθ0,θ1,E2

)[
V ′ (E2)−

V (E2)−V (E [θ |θ0 < θ < θ1])

E2 −E [θ |θ0 < θ < θ1]

]
.

If dV̂ (·)
dE2

|E2=E[θ |θ≥θ1] > 0, we let E∗
2(θ0,θ1) = E[θ |θ ≥ θ1] and if dV̂ (·)

dE2
|E2=E[θ |θ>θ0] < 0, we

let E∗
2(θ0,θ1) = E[θ |θ > θ0]. Otherwise, we let E∗

2 ≡ E∗
2(θ0,θ1) be the solution to

V (E∗
2)−V (E [θ |θ0 < θ < θ1]) =V ′ (E∗

2)(E
∗
2 −E [θ |θ0 < θ < θ1]) .

Next, consider the program:

max
θ0∈[0,θ 0], θ1∈[θ 0,1]

V̂ (θ0,θ1,E∗
2 (θ0,θ1)) s.t. θ1 ≥ θ0.

Let θ ∗
0 and θ ∗

1 be the maximisers. There are three cases to consider:

(i) E[θ |θ > θ ∗
0 ]< E∗

2(θ
∗
0 ,θ

∗
1 )< E[θ |θ ≥ θ ∗

1 ].

(ii) E∗
2(θ

∗
0 ,θ

∗
1 ) = E[θ |θ ≥ θ ∗

1 ] because dV̂ (θ∗
0 ,θ

∗
1 ,E[θ |θ≥θ∗

1 ])
dE2

> 0.

(iii) E∗
2(θ

∗
0 ,θ

∗
1 ) = E[θ |θ > θ ∗

0 ] because dV̂ (θ∗
0 ,θ

∗
1 ,E[θ |θ≥θ∗

1 ])
dE2

< 0.

We consider case (i) first. Letting E∗
2 ≡ E∗

2(θ0,θ1) and α∗
θ0,θ1

≡ αθ0,θ1,E∗
2 (θ0,θ1), the
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Envelope theorem gives us that

dV̂ (θ1,θ1,E∗
2)

dθ1
=

∂V̂ (θ0,θ1,E2)

∂θ1

∣∣∣∣∣
E2=E∗

2

= f (θ1)(θ1 −E [θ |θ0 < θ < θ1])
1−F (θ0)

F (θ1)−F (θ0)
α
∗
θ0,θ1

×
[
V ′ (E [θ |θ0 < θ < θ1])−

V (E∗
2)−V (E [θ |θ0 < θ < θ1])

E∗
2 −E [θ |θ0 < θ < θ1]

]

and

dV̂ (θ0,θ1,E∗
2)

dθ0
=

∂V̂ (θ0,θ1,E2)

∂θ0

∣∣∣∣∣
E2=E∗

2

=
f (θ0)

f (θ1)

E [θ |θ0 < θ < θ1]−θ0

θ1 −E [θ |θ0 < θ < θ1]

dV̂ (θ0,θ1,E∗
2 (θ0,θ1))

dθ1

+ f (θ0)(E [θ |θ > θ0]−θ0)
V (E∗

2)−V (E [θ |θ0 < θ < θ1])

E∗
2 −E [θ |θ0 < θ < θ1]

− f (θ0)(E [θ |θ > θ0]−θ0)
V (E [θ |θ0 < θ < θ1])α∗

θ0,θ1
+V (E∗

2)
(

1−α∗
θ0,θ1

)

E [θ |θ > θ0]−θ0
.

Thus, at any interior optimal θ ∗
0 ∈ (0,θ0) and θ ∗

1 ∈ (θ ∗
0 ,1), it must be that

V ′ (E [θ |θ ∗
0 < θ < θ

∗
1 ]) (E

∗
2 −E [θ |θ ∗

0 < θ < θ
∗
1 ]) =V (E∗

2)−V (E [θ |θ ∗
0 < θ < θ

∗
1 ]) ,

which ensures that the impact on the average profit from workers equals the gains from
more workers being assigned to j = 1 net of losses from fewer workers being assigned to
j = 2; and

V (E∗
2)−V

(
E
[
θ |θ ∗

0 < θ < θ ∗
1
])

E∗
2 −E

[
θ |θ ∗

0 < θ < θ ∗
1
] =

V
(
E
[
θ |θ ∗

0 < θ < θ ∗
1
])

α∗
θ∗

0 ,θ
∗
1
+V (E∗

2)
(

1−α∗
θ∗

0 ,θ
∗
1

)

E
[
θ |θ > θ ∗

0
]
−θ ∗

0
,

which ensures that changes in profits due to changes in workers assigned to j = 1 or 2 equals
the changes in profits from retaining fewer workers. If an interior solution (θ ∗

0 ,θ
∗
1 ,E

∗
2) to

the first-order condition exists, then we can construct a convex supporting function p∗ as
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follows:

p∗ (θ) :=
[
V ′ (E [θ |θ ∗

0 < θ < θ
∗
1 ]) (θ −θ

∗
0 )
]
+

=





V (θ) = 0 if θ ∈ [0,θ ∗
0 ],

V ′ (E
[
θ |θ ∗

0 < θ < θ ∗
1
])(

θ −θ ∗
0
)

if θ ∈ (θ ∗
0 ,1].

By construction, p∗ is convex and p∗ ≥V . One can also verify that p∗ and Gθ∗
0 ,θ

∗
1 ,E2(θ

∗
0 ,θ

∗
1 )

satisfy (16)–(18). Hence, we conclude that Gθ∗
0 ,θ

∗
1 ,E

∗
2 (θ

∗
0 ,θ

∗
1 )

solves (3). Observe that this
corresponds to the case in which the interval (θ ∗

0 ,1) is bi-pooled to E[θ |θ ∗
0 < θ < θ ∗

1 ] and
E2(θ

∗
0 ,θ

∗
1 ). Figure 4 depicts the typical example of this case.

Figure 4: Case 1: E[θ |θ ≥ θ ∗
0 ]< E∗

2 < E[θ |θ ≥ θ ∗
1 ].
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ω→ → ω(ε→0 , ε→1 , E→
2 )

E→
2 → E→

2 (ω→0 , ω→1)

= V →(E↑
1 )(E↑

2 → E↑
1 )

E[ω|ω → ω→1 ]

E→
1 → E[ω|ω→0 < ω < ω→1 ]

We now consider case (ii) in which E∗
2(θ

∗
0 ,θ

∗
1 ) = E[θ |θ ≥ θ ∗

1 ]. The expected payoff
for the firm now is:

V̂ (θ ∗
0 ,θ

∗
1 ,E [θ |θ ≥ θ

∗
1 ]) =V (E [θ |θ ∗

0 < θ < θ
∗
1 ]) (F (θ ∗

1 )−F (θ ∗
0 ))

+V (E [θ |θ ≥ θ
∗
1 ]) (1−F (θ ∗

1 ))

Observe that

dV̂ (θ0,θ1,E [θ |θ ≥ θ1])

dθ0

= f (θ0) [E [θ |θ0 < θ < θ1]−θ0]

(
V ′ (E [θ |θ0 < θ < θ1])−

V (E [θ |θ0 < θ < θ1])

E [θ |θ0 < θ < θ1]−θ0

)
,
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and

dV̂ (θ0,θ1,E [θ |θ ≥ θ1])

dθ1

= f (θ1)
(
V (E [θ |θ0 < θ < θ1])+V ′ (E [θ |θ0 < θ < θ1]) (θ1 −E [θ |θ0 < θ < θ1])

)

+ f (θ1)V ′ (E [θ |θ ≥ θ1]) (E [θ |θ ≥ θ1]−θ1)

− f (θ1) [V (E [θ |θ ≥ θ1])] .

Suppose θ ∗
0 > 0, then the first-order condition with respect to θ0 means

V ′ (E [θ |θ ∗
0 < θ < θ

∗
1 ]) (E [θ |θ ∗

0 < θ < θ
∗
1 ]−θ

∗
0 ) =V (E [θ |θ ∗

0 < θ < θ
∗
1 ]) ,

but if θ ∗
0 = 0, then

dV̂ (0,θ ∗
1 ,E [θ |θ ≥ θ ∗

1 ])

dθ0
=V ′ (E [θ |θ < θ

∗
1 ])−

V (E [θ |θ < θ ∗
1 ])

E
[
θ |θ < θ ∗

1
] < 0.

The first-order condition with respect to θ1 is

V (E [θ |θ ≥ θ
∗
1 ]) =V (E [θ |θ ∗

0 < θ < θ
∗
1 ])

+V ′ (E [θ |θ ∗
0 < θ < θ

∗
1 ]) (θ

∗
1 −E [θ |θ ∗

0 < θ < θ
∗
1 ])

+V ′ (E [θ |θ ≥ θ
∗
1 ]) (E [θ |θ ≥ θ

∗
1 ]−θ

∗
1 )

Letting E∗
1 ≡ E[θ |θ ∗

0 < θ < θ ∗
1 ] and E∗

2 ≡ E[θ |θ ≥ θ ∗
1 ], construct p∗ as follows:

p∗ (θ) := max
{[

V (E∗
1)+V ′ (E∗

1)(θ −E∗
1)
]
+
,V (E∗

2)+V ′ (E∗
2)(θ −E∗

2)
}

(24)

=




[V (E∗

1)+V ′ (E∗
1)(θ −E∗

1)]+ if θ ∈ [0,θ ∗
1 ],

V (E∗
2)+V ′ (E∗

2)(θ −E∗
2) if θ ∈ (θ ∗

1 ,1].

In case θ ∗
0 > 0, the first-order condition with respect to θ0 means that V ′(E∗

1)> 0 so that p∗

is convex on [0,θ ∗
1 ). If θ ∗

0 = 0, then p∗ is affine (and thus convex) on [0,θ ∗
1 ). To ensure that

p∗ is convex on [0,1], we further require that V ′(E∗
2) ≥ V ′(E∗

1). By construction, p∗ ≥ V .
Moreover, p∗ and Gθ∗

0 ,θ
∗
1 ,E

∗
2 (θ

∗
0 ,θ

∗
1 )

satisfy (16)–(18) and so we conclude that Gθ∗
0 ,θ

∗
1 ,E

∗
2 (θ

∗
0 ,θ

∗
1 )

solves (3). Observe that, in this case, the interval (θ ∗
0 ,θ

∗
1 ) is pooled to E∗

1) and the interval
[θ ∗

1 ,1] is pooled to E∗
2 . Figure 5 shows the typical example of the case when E∗

2(θ
∗
0 ,θ

∗
1 ) =
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E[θ |θ ≥ θ ∗
1 ] and either θ ∗

0 ∈ (0,θ 0) (Figure 5a) or θ ∗
0 = 0 (Figure 5b).

Figure 5: Case 2: E∗
2(θ

∗
0 ,θ

∗
1 ) = E[θ |θ ≥ θ ∗

1 ].

(a) Case 2a: θ ∗
0 ∈ (0,θ 0).
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Finally, we consider case (iii) in which E∗
2(θ

∗
0 ,θ

∗
1 ) =E[θ |θ > θ ∗

0 ]. The expected payoff
for the firm is now:

V̂ (θ ∗
0 ,θ

∗
1 ,E [θ |θ > θ

∗
0 ]) =V (E [θ |θ > θ

∗
0 ]) (1−F (θ ∗

0 )) .

Since the payoff does not depend on θ1, we set it to θ ∗
1 = 1. Observe that

dV̂ (θ0,θ1,E [θ |θ > θ0])

dθ0
= f (θ0) [E [θ |θ > θ0]−θ0]

(
V ′ (E [θ |θ > θ0])−

V (E [θ |θ > θ0])

E [θ |θ > θ0]−θ0

)
.
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Thus, the first-order condition then requires that, if θ ∗
0 ∈ (0,θ ∗

0 ) and θ ∗
1 ∈ (θ ∗

0 ,1),

V ′ (E [θ |θ > θ
∗
0 ]) (E [θ |θ > θ

∗
0 ]−θ

∗
0 ) =

V
(
E
[
θ |θ > θ ∗

0
])

E
[
θ |θ > θ ∗

0
]
−θ ∗

0
;

i.e., the tangent to V at E[θ |θ > θ ∗
0 ] crosses the x-axis at θ ∗

0 . Construct p∗ now as follows:

p∗ (θ) =





V (θ) = 0 if θ ∈ [0,θ ∗
0 ],

V ′ (E
[
θ |θ ≥ θ ∗

0
])(

θ −θ ∗
0
)

if θ ∈ (θ ∗
0 ,1].

.

Observe that p∗ is convex, p∗ ≥V . Moreover, p∗ and Gθ∗
0 ,θ

∗
1 ,E

∗
2 (θ

∗
0 ,θ

∗
1 )

satisfy (16)––(18) so
that Gθ∗

0 ,θ
∗
1 ,E

∗
2 (θ

∗
0 ,θ

∗
1 )

solves (3). In this case, the interval (θ ∗
0 ,1] is pooled to E[θ |θ > θ ∗

0 ].

Figure 6: Case 3: E∗
2(θ

∗
0 ,θ

∗
1 ) = E[θ |θ > θ ∗

0 ].
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1 ∈ (θ 0,θ 1).
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Figure 6 shows the typical examples of the case when E∗
2(θ

∗
0 ,θ

∗
1 ) = E[θ |θ > θ ∗

0 ]. ■
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We now characterise feasible G that solves the firm’s information design problem, (4).
Towards this goal, in case V has a bi-tangent, we denote it as V b(·), and let Eb

1 and Eb
2

denote the two tangency points, where Eb
2 > Eb

1 , and let θ b
0 and θ b

1 be points such that
V b(θ b

0 ) = 0 and E[θ |θ b
0 < θ < θ b

1 ] = Eb
1 . Figure 7 shows how Eb

1 , Eb
2 , θ b

0 and θ b
1 are

obtained.

Figure 7: V has a bi-tangent, V b.
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1 = E[ω|ωb

0 < ω < ωb
1]

V b(·)
V b(ωb

0) = 0

ωb
1

In case V does not have a bi-tangent, then at least one of (20) and (21) does not hold. If
(20) does not hold, then let Eb

2 ∈ [θ 1,1] be the point such that the tangent to V2 at Eb
2 goes

through the point (θ 0,0). If (21) does not hold, then let Eb
1 ∈ [θ 0,θ 1] be the point such that

the tangent to V1 at Eb
1 goes through the point (1,V2(1)), and let θ b

0 be the point such that
the tangents equals zero.
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Figure 8: V does not have a bi-tagent.

(a) Case: (20) does not hold.

0 1
0 ✓

V (·)
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(b) Case: (21) does not hold
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V (·)
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1ω0
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Theorem 3. Suppose po
2 ≥ po

1 and E[θ ]< Eo
2 . Suppose a bi-tangent of V exists.

(i) If

Eb
1 ≤ E[θ |θ > θ

b
0 ]≤ Eb

2 ≤ E[θ |θ ≥ θ
b
1 ], (25)

then an optimal G exists that bi-pools the interval [θ b
0 ,1] to Eb

1 and Eb
2 .

(ii) If (25) does not hold and

Eb
2 > E[θ |θ ≥ θ

b
1 ], (26)

then an optimal G exists that pools the interval (θ ∗
0 ,θ

∗
1 ) to E[θ |θ ∗

0 < θ < θ ∗
1 ]> Eb

1 ,

and pools the interval [θ ∗
1 ,1] to E[θ |θ ≥ θ ∗

1 ] < Eb
2 , where θ ∗

0 ∈ [0,θ b
0 ) and θ ∗

1 ∈
(θ ∗

0 ,1).

(iii) If (25) does not hold and

Eb
1 > E[θ |θ > θ

b
0 ], (27)
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then an optimal G exists that pools the interval (θ ∗
0 ,1] to E[θ |θ > θ ∗

0 ].

Suppose V does not have a bi-tangent: If (20) does not hold, then optimal G has the same

features as case (iii) above if E[θ |θ > θ 0]≥ Eb
2 and otherwise G has the same features as

case (ii). (21) does not hold, then optimal G has the same features as case (iii) above if

θ b
0 < E[θ |θ > θ b

0 ] and otherwise G has the same features as case (ii).

Proof. (i) By Fact 2(ii), the interval [θ b
0 ,1] can be bi-pooled at Eb

1 and Eb
2 if and only if (25)

holds. This case corresponds to case 1 from Lemma 4 with θ ∗
0 = θ b

0 , θ ∗
1 = θ b

1 and E∗
2 = Eb

2 .
(ii) This case includes the case in which (25) does not hold and Eb

2 > E[θ |θ > θ b
0 ] because

θ b
1 ≥ θ b

0 . Consider first the case E2 ≥ θ 1. Letting denote E2 ≡ E[θ |θ > θ b
0 ], we first argue

that
V (E2)<V (Eb

1)+V ′(Eb
1)(θ

b
1 −Eb

1)+V ′(E2)(E2 −θ
b
1 ). (28)

Toward a contradiction, suppose the inequality does not hold. Then, there must be a
line through the point (θ b

1 ,V (Eb
1) +V ′(Eb

1)(θ
b
1 − Eb

1)) that is tangent to V at E[θ |θ ≥
θ b

1 ]. However, by the choice of θ b
1 , V has a unique tangent that goes through the point

(θ b
1 ,V (Eb

1)+V ′(Eb
1)(θ

b
1 −Eb

1)) given by the tangent at Eb
2 —a contradiction. Figure 9 de-

picts a typical example of this case.

Figure 9: Case (ii): Positive difference.
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For any θ0 ∈ [0,θ b
0 ], let E1(θ0) be given by

θ0 +V ′ (E1 (θ0))E1 (θ0) =V (E1 (θ0)) ;

i.e., E1(θ0) is the point such that the line through (θ0,0) and (E1(θ0),V (E1(θ0))) is tangent
to V at E1(θ0). Because Eb

1 ∈ (θ 0,θ 1), concavity of V on [θ 0,θ 1] means that E1(θ0) is
continuous and strictly decreasing. Moreover, θ1(θ0), defined implicitly by E[θ |θ0 < θ <
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θ1(θ0)] = E1(θ0), is also continuous and strictly decreasing. Now, let p1 : θ → R denote
the smallest linear function that exceeds V1 and let Ê1 denote the smallest E ∈ θ such that
p1(E) =V1(E). Let θ̂1 be such that E[θ |θ < θ̂1] = Ê1. Suppose, as shown in Figure 10,

V (E[θ |θ ≥ θ̂1])>V (Ê1)+V ′(Ê1)(θ̂1 − Ê1)+V ′(E[θ |θ ≥ θ̂1])(E[θ |θ ≥ θ̂1]− θ̂1). (29)

Figure 10: Case (ii.a): Negative difference.
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In this case, by the intermediate value theorem, there exists a θ0 ∈ (0,θ 0) such that

V (E [θ |θ ≥ θ1 (θ0)]) =V (E1 (θ0))+V ′ (E1 (θ0))(θ1 (θ0)−E1 (θ0))

+V ′ (E [θ |θ ≥ θ1 (θ0)])(E [θ |θ ≥ θ1 (θ0)]−θ1 (θ0)) .

Moreover, observe that such a θ0 is unique due to the concavity of V on [θ 0,θ 1] and on
[θ 1,1]. This case corresponds to the case 2a in the proof of Lemma 4.

Suppose now (29) does not hold as shown in Figure 11.

Figure 11: Case (ii.b): Positive difference.
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Now let θ̃1 > θ̂1 be such that p1(θ̃1|θ̃1) =V (θ̃1), where

p1
(
θ
′|θ1
)

:=V (E [θ |θ < θ1])+V ′ (E [θ |θ < θ1])
(
θ
′−E [θ |θ < θ1]

)
.

We will argue that (see Figure 12):

V (E[θ |θ ≥ θ̃1])>V (E[θ |θ < θ̃1])+V ′(E[θ |θ < θ̃1])(θ̃1 −E[θ |θ < θ̃1])

+V ′(E[θ |θ ≥ θ̃1])(E[θ |θ ≥ θ̃1]− θ̃1)

By construction, θ̃1 ∈ (θ 1,1) is such that the tangent to V at E[θ |θ < θ̃1]∈ (θ 1,1) intersects
V at θ̃1. Since V is concave on [θ 1,1], V ′(·) is strictly decreasing on (θ̃1,1], for any E2 ∈
(θ̃1,Eb

2)⊆ (θ̃1,1],
V ′(E2)(E2 − θ̃1)>V (E2)−V (θ̃1).

Letting E2 = E[θ |θ < θ̃1] gives the desired inequality.

Figure 12: Case (ii.b): Negative difference.
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By the intermediate value theorem, there exists θ1 ∈ (θ̂1, θ̃1) such that

V (E [θ |θ ≥ θ1]) =V (E [θ |θ < θ1])+V ′ (E [θ |θ < θ1]) (θ1 −E [θ |θ < θ1])

+V ′ (E [θ |θ ≥ θ1]) (E [θ |θ ≥ θ1]−θ1) .

Moreover, observe that such a θ0 is unique due to the concavity of V on [θ 0,θ 1] and on
[θ 1,1]. This case corresponds to case 2b in the proof of Lemma 4.

Now suppose that E[θ |θ ≥ θ b
1 ]< θ 1. Because V is concave on [θ 0,θ 1], E[θ |θ ≥ θ b

1 ]>

Eb
1 means that V ′(E[θ |θ ≥ θ b

1 ])<V ′(Eb
1). Hence, a function constructed as in (24) would

not be convex. As already argued, choosing any θ0 ∈ (0,θ b
0 ) means E1(θ0) > Eb

1 and
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θ1(θ0) > θ b
1 and E1(θ0) ≥ E[θ |θ ≥ θ b

1 ]. So long as E1(θ0) < θ 1, a function constructed
as in (24) would not be convex. If E1(θ0) ≥ θ 1 then we can proceed as above with θ0

replacing θ 0 so we are once again in either case 2a or 2b of Lemma 4.
(iii) Let θ̃0 be such that E[θ |θ > θ̃0] = Eb

1 and note that θ̃0 > θ 0 because of condition
(27). Define γ : [θ b

0 , θ̃0]→ R as

γ(θ0) :=V ′(E[θ |θ > θ0])−
V (E[θ |θ > θ0])

E[θ |θ > θ0]−θ0
.

Since the line segment connecting θ b
0 and Eb

1 is tangent to V at Eb
1 , θ̃0 > θ b

0 , and V is
concave on [θ 0,θ 1], the condition (27) implies that

γ(θ b
0 )> 0 > γ(θ̃0).

Since γ is continuous, by the intermediate value theorem, there exists θ0 ∈ (θ b
0 , θ̃0) such

that γ(θ ∗
0 ) = 0. Observe that this case corresponds to case (iii) in the proof of Lemma 4.

Now, suppose that a bi-tangent does not exist. Consider the first the case in which (20)
does not hold. If E[θ |θ > θ 0]≥ Eb

2 . Since E[θ ]≤ E, there exists θ0 ∈ [0,θ 0] such that

V (E [θ |θ > θ0]) =V ′ (E [θ |θ > θ0]) (E [θ |θ > θ0]−θ0) ,

which is case (iii) in the proof of Lemma 4. Now suppose E[θ |θ > θ 0]< E0. Observe that
neither case (iii) nor case (i) in the proof of Lemma 4 is possible; i.e., only case (ii) can
arise.

Finally, suppose (21) does not hold. If E[θ |θ > θ b
0 ] < Eb

1 , then any tangency to V on
[θ 0,1] cannot be on [θ 1,1] so that this case corresponds to case (iii) in the proof of Lemma
4. If E[θ |θ > θ b

0 ]≥ Eb
1 , neither case (iii) nor case (i) in the proof of Lemma 4 is possible;

i.e., only case (ii) can arise. ■

We now characterise the optimal G when po
1 ≥ po

2.

Theorem 4. Suppose po
1 ≥ po

2. Then, V has a bi-tangent on [θ 0,1]. Let Eb
1 and Eb

2 denote

the two bi-tangency points.

(i) If E[θ ] ∈ [0,Eo
1 ], then G associated with (θ0,1,1) for some θ0 ∈ [0,θ 0) solves the

firm’s problem. Moreover, no worker is ever assigned position j = 2.
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(ii) If E[θ ] ∈ [Eo
1 ,E

b
1 ], then G = F solves the firm’s problem and assigning all workers to

position j = 1 is optimal.

(iii) If E[θ ] ∈ [Eb
1 ,E

b
2 ]...

(a) ... and (25) holds with θ b
0 = 0,41 then an optimal G bi-pools the Θ to Eb

1 and

Eb
2 .

(b) ... but (25) does not hold, then an optimal G pools the interval (0,θ ∗
1 ) to

E[θ |θ < θ ∗
1 ]> Eb

1 , and pools the interval [θ ∗
1 ,1] to E[θ |θ ≥ θ ∗

1 ]< Eb
2 for some

θ ∗
1 ∈ Θ.

(iv) If E[θ ] ∈ [Eb
2 ,1], then G = F solves the firm’s problem and assigning all workers to

position j = 2 is optimal.

Proof. The result is immediate from previous arguments while observing that the slope of
po

1 must be greater than the tangent so that θ b
1 = 0. ■

A.4 Inefficiencies

A.4.1 Retention

Formally, we say that an HR policy ϕ : Θ → ∆({0,1,2}) exhibits:

• over-retention if
∫ θ 0

0 ϕ(0|θ)dF(θ)< F(θ 0);

• under-retention if
∫ 1

θ 0
ϕ(0|θ)dF(θ)> 0;

• efficient retention if
∫ θ 0

0 ϕ(0|θ)dF(θ) = F(θ 0) and
∫ 1

θ 0
ϕ(0|θ)dF(θ) = 0.

Note that these definitions allow for an HR policy to exhibit both over-retention and under-
retention.

Toward proving Theorem 1, we first characterise the case in which efficient retention is
possible.

Lemma 5. An optimal HR policy exists with efficient retention if and only if the effi-

cient retention threshold θ 0 satisfies V ′
2(E[θ |θ ≥ θ 0]) ≥ V ′

1(θ 0) and V2(E[θ |θ ≥ θ 0]) =

V ′
2(E[θ |θ ≥ θ 0])(E[θ |θ ≥ θ 0]−θ 0).

41As before, θ b
1 is given via E[θ |θ < θ b

1 ] = Eb
1
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Proof. Let G be a solution to the firm’s information design problem and suppose it can be
induced by an HR policy that exhibits efficient retention. By Fact 1, the support function
p of G equals zero on [0,θ 0]. Since p ≥ V , p must have a kink with a right-derivative
greater than V ′

1(θ 0). Since supp(G) ⊆ [θ 0,1], by Fact 2(ii), p must be tangent to V at
some E ∈ (θ 0,1]. Because V1 is concave, it must be that E ∈ (θ 1,1]. The concavity of
V2 means that such a point E, if it exists, must be unique. Finally, observe that condition
V2(E[θ |θ ≥ θ 0]) = V ′

2(E[θ |θ ≥ θ 0])(E[θ |θ ≥ θ 0]− θ 0) ensures E = E[θ |θ ≥ θ 0]. That
the converse also holds follows from Fact 1. ■

Let us now prove the key lemma that delivers 1.

Lemma 6. No optimal HR policy exhibits under-retention.

Proof. Let ϕ be an optimal HR policy that exhibits under-retention. Then, there exists
a subset S ⊆ [θ 0,1] who are let go with strictly positive probability. In the associated
information design game, consider the G that is induced by ϕ . Suppose we modify G by
fully revealing the types of workers in S whenever they are to be let go. Since V (θ) > 0
for all θ ∈ S, the firm can assign them to positions that maximise their output to obtain
a strictly positive payoff, rather than a payoff of zero from letting go of them. Moreover,
the firm’s profits from retained workers are unaffected by this modification of G. Thus,
the firm’s payoff must be strictly higher with this modification. By Lemma 1, the firm can
attain at least this payoff from an HR policy, which contradicts the optimality of ϕ . ■

We now prove that any optimal HR policy (monotone or otherwise) exhibits over-retention.

Theorem 1. An optimal HR policy exists with efficient retention if and only if the efficient

retention threshold θ 0 satisfies

V ′
2(E[θ |θ ≥ θ 0])≥V ′

1(θ 0) (30)

and

V2(E[θ |θ ≥ θ 0]) =V ′
2(E[θ |θ ≥ θ 0])(E[θ |θ ≥ θ 0]−θ 0). (31)

Moreover, under-retention is never optimal. Therefore, if conditions (30) and (31) do not

hold, then optimal HR policy exhibits over-retention.
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Proof. The first two statements are simply Lemma 5 and 6, respectively. If conditions (30)
and (31) do not hold, then no HR policy with efficient retention is optimal. That is, any
optimal HR policy exhibits inefficient retention. It must also exhibit no under-retention
by Lemma 6. By definitions of efficient retention and under-retention, it follows that any
optimal HR policy must exhibit over-retention. ■

A.4.2 Promotion

We say that an HR policy ϕ : Θ → ∆({0,1,2}) exhibits:

• over-promotion if
∫ θ 1

0 ϕ(2|θ)dF(θ)> 0;

• under-promotion if
∫ 1

θ 1
ϕ(2|θ)dF(θ)< 1−F(θ 1);

• efficient promotion if
∫ θ 1

0 ϕ(2|θ)dF(θ) = 0 and
∫ 1

θ 1
ϕ(2|θ)dF(θ) = 1−F(θ 1)

Note again that these definitions allow for an HR policy to exhibit both over-retention and
under-retention. Recall that any feasible G can be induced by a monotone HR policy and
that, if G is pooling (vs bi-pooling), then it can be induced by a deterministic monotone
HR policy.

We first note that if the degenerate distribution of posterior means (i.e., = F) is optimal,
then there is over-promotion (resp. under-promotion) if the firm assigns all workers to j = 2
(resp. j < 2) under the prior belief. Toward proving theorem Theorem 2, let us consider
the case in which po

2 > po
1.

Proposition 7. Suppose po
2 > po

1. Suppose no optimal monotone HR policy is determin-

istic. Then, optimal monotone HR policies can exhibit only over-promotion, only under-

promotion, or both over- and under-promotion.

Proof. If no optimal monotone HR policy is deterministic, then optimal G must bi-pool the
interval [θ b

0 ,1] to E[θ |θ b
0 < θ < θ b

1 ] and E2 ∈ (E[θ |θ > θ b
0 ],E[θ |θ ≥ θ b

1 ]). A monotone HR
policy that induces G is one that: (i) assigns j = 2 with probability one to workers whose
types are in [θ b

1 ,1], and (ii) assigns j = 1 with some probability β to workers whose types
are in [θ b

0 ,θ
b
1 ] and assigns j = 2 with complementary probability. If θ 1 ≥ θ b

1 , then this
monotone HR policy exhibits only over-promotion. However, if θ 1 < θ b

1 , this monotone
HR policy exhibits both over-promotion (because it sometimes assigns j = 2 to workers
whose types are in [θ b

0 ,θ 1]) and under-promotion (because it sometimes assigns j = 1 to
workers whose types are in [θ 1,θ

b
1 ]). To show that monotone HR policy can exhibit only
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under-promotion, let t̃b
1 be such that E[θ |θ ≥ t̃b

1 ] =Eb
2 . If E[θ |θ b

0 < θ < θ̃ b
1 ]<Eb

1 , following
the same argument as in the proof of Lemma 2 in Arieli et al. (2023), we can induce a bi-
pooling distribution by a monotone HR policy that: (i) assigns j = 1 with probability one
to workers whose types are in [θ b

0 , θ̃
b
1 ], and (ii) assigns j = 1 with some probability β to

workers whose types are in [θ̃ b
1 ,1] and assigns j = 2 with complementary probability. In

this case, if θ 1 ≤ t̃b
0 , there is only under-promotion. ■

We now focus on the case in which an optimal HR policy is deterministic. To state the
result formally, let E2 := E[θ |θ ≥ θ 1]. When E2 < Eb

2 , define E1 be such that

V
(
E1
)
+V ′ (E1

)(
θ 1 −E1

)
=V

(
E2
)
+V ′ (E2

)(
θ 1 −E2

)
. (32)

and let

θ−1 =





0 if V
(
E1
)
≥V ′ (E1

)
E1,

E1 −
V(E1)
V ′(E1)

otherwise.
(33)

As Figure 13 shows, given E2 < Eb
2 , E1 is the point such that the tangent to V at E1

intersects the tangent of V at E2 at (θ 1,V (E2)+V ′(E2)(θ 1 −E2)). Figures 13a and 13b
show the cases in which θ−1 = 0 and θ−1 > 0, respectively.
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Figure 13: Over- vs under-promotion.

(a) Case: θ−1 = 0.
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Recall that we say that a deterministic monotone HR policy exhibits over-promotion
(resp. under-promotion) if the associated promotion cutoff is below (resp. above) the
efficient promotion threshold.

Proposition 8. Suppose optimal monotone HR policy, ϕ∗, is deterministic.

(i) Suppose V has a bi-tangent. Then, ϕ∗ exhibits over-promotion if Eb
2 < E[θ |θ ≥ θ b

1 ]

and either (a) E2 > Eb
2 or (b) E2 < Eb

2 and E[θ |θ−1 < θ < θ 1]> E1; otherwise, ϕ∗

exhibits under-promotion.

(ii) Suppose no bi-tangent of V exists. Then, ϕ∗ exhibits over-promotion if E[θ |θ−1 <

θ < θ 1]> E1; otherwise ϕ∗ exhibits under-promotion.

Proof. If V has a bi-tangent and a deterministic monotone HR policy is optimal, it must be
the case that (25) does not hold and Eb

2 > E[θ |θ ≥ θ b
1 ].

Suppose E2 > Eb
2 . Toward a contradiction, suppose θ ∗

1 ≥ θ 1. By definition of Eb
2 as

(one of) the bi-tangency points of V and the fact that V |[θ 0,θ 1]
and V |[θ 1,1]

are concave, the

53



tangent of V at E2 ∈ (θ 1,1) must lie strictly above V on [θ 0,θ 1] and equal zero at some
θ0 < θ 0 as can be seen from the figure below.

Figure 14: E2 > Eb
2 : Over-promotion.
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V (Ê1) + V →(Ê1)(ω1 → Ê1)
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2Eb

1

Thus, any G supported by p such that p|[θ 1,1]
is given by the tangent on V at E2 must pool

the mass on [θ0,1] at E[θ |θ ≥ θ0]. But because E[θ |θ ≥ θ0] < E2 ≡ E[θ |θ ≥ θ 1], such a
support function is not a tangent to V at E[θ |θ ≥ θ0]; i.e., no such G is optimal. Hence, we
must have θ ∗

1 < θ 1.
Now suppose E2 < Eb

2 . Consider first the case E ′
1 := E[θ |θ−1 < θ < θ 1]> E1. Then,

concavity of V |[θ 0,θ 1]
implies that the tangent to V at E ′

1 evaluated at θ 1 must lie strictly
below the intersection of the tangents to V at E1 and E2as can be seen in the figure below.

Figure 15: E2 < Eb
2 and E ′

1 > E1: Over-promotion.

0 1
0 ✓

E2

V (·)
V (E2)
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E1Eb
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V →(E1)

E
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1

E
→
1 = E[ω|ω↑1 < ω < ω1]

V (E
→
1) + V →(E

→
1)(ω1 → E

→
1)

But this means that

dV̂
(
θ−1,θ 1,E2

)

dθ1

= f
(
θ 1
)(

V
(

E ′
1

)
+V ′

(
E ′

1

)(
θ 1 −E ′

1

)
+V ′ (E2

)(
E2 −θ 1

)
−V

(
E2
))

(34)
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is strictly negative and so θ ∗
1 < θ 1; i.e., there is over-promotion. If E ′

1 < E1, analogous
arguments yields that θ ∗

1 > θ 1 (see figure below) so that there is under-promotion.

Figure 16: E2 < Eb
2 and E ′

1 < E1: Under-promotion.
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The case for when Eb
2 < E[θ |θ ≥ θ b

1 ] follows immediately from Theorem 3.
For the case in which V does not have a bi-tangent, observe that the argument for why

there is over- or under-promotion when E2 < Eb
2 did not rely on bi-tangents. Hence, the

same argument still goes through even when V does not have a bi-tangent. ■

We note that the condition E2 > Eb
2 holds if there is a sufficient mass of workers whose

types are above Eb
2 . The condition E[θ |θ−1 < θ < θ 1] > E1 holds if there is a sufficient

mass of workers whose types are in [E1,θ 1].

Theorem 2. An optimal deterministic monotone HR policy exhibits either over-promotion

or under-promotion but not both. If no deterministic monotone HR policy is optimal, then

an optimal monotone HR policy could exhibit only over-promotion, only under-promotion,

or both.

Proof. Case: po
2 > po

1. Proposition Proposition 7 deals with the case when no optimal
HR policy is optimal, and Proposition Proposition 8 deals with the case when optimal HR
policy is deterministic.

Case: po
2 ≤ po

1. From Theorem 4, the only interesting case when po
1 ≥ po

2 is if E[θ ] ∈
[Eb

1 ,E
b
2 ]. In this case, the analysis of whether there is over- or under-promotion is the same

as the case in which po
2 > po

1 when the firm does not let go of any workers. ■
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A.4.3 Comparative statics on c

Proposition 9. Suppose (25) does not hold and Eb
2 > E[θ |θ ≥ θ b

1 ]. Then, changes in

worker’s productivity in job 2 that do not alter the efficient promotion threshold would

not alter the nature of inefficiency with respect to the firm’s promotion decision if E2 <

Eb
2 ; if E2 > Eb

2 instead, it is possible that firm may switch from over-promotion to under-

promotion.

Proof. Consider a change c̃ such that c̃ is strictly increasing and strictly convex, c̃|[0,θ 1]
=

c|[0,θ 1]
, c̃(1) = c(1) and c̃′(E2)> c′(E2). Let Ṽ := [max j∈{1,2} v j(·)− c̃(·)]+.

Figure 17: Comparative statics on c.
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Then, Ṽ ′(E2)<V ′(E2) so that the tangent to Ṽ at E2 cuts θ 2 below the tangent to V at E2

(see figure above). Given concavity of V on [θ 0,θ 1], Ẽ1 >E1, where Ẽ1 solves (32) (with V

replaced with Ṽ ). In turn, θ̃1 defined via (33) (with E1 replaced with Ẽ1) must be such that
θ̃−1 ≤ θ−1. Therefore, Ẽ ′

1 := E[θ |θ̃−1 < θ < θ 1 < E ′
1 := E[θ |θ−1 < θ < θ 1]. Hence, the

derivative (34) must increase (see again figure). That is, under-promotion becomes more
likely. ■

A.4.4 Comparative statics on v2

Recall that θ 1 ≡ s1−s2
k2−k1

and consider an increase in k2 to k̃2 = k2 + ε for some ε > 0. Then,
to ensure that the efficient promotion threshold remains unchanged, we need

θ 1 =
s1 − s̃2

k̃2 − k1
⇔ s̃2 = s1 −θ 1 (k2 − k1)− εθ 1 = s2 − εθ 1.
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Since the efficient promotion threshold remains unchanged, E1, E2 and θ all remain un-
changed. Let Ṽ denote the firm’s value function under (k̃2, s̃2):

Ṽ (θ) =





V (θ) if θ ≤ θ 1,

s̃2 + k̃2θ − c(θ) = v2 (θ)− c(θ)+ ε
(
θ −θ 1

)
if θ > θ 1.

Note that the tangent to Ṽ at E2 is given by

Ṽ ′ (E2
)(

θ −E2
)
+Ṽ

(
E2
)
=
(
k̃2 − c′

(
E2
))(

θ −E2
)
+ ṽ2

(
E2
)
− c
(
E2
)

=
(
k2 − c′

(
E2
))(

θ −E2
)
+ ε
(
θ −E2

)

+ v2
(
E2
)
− c
(
E2
)
+ ε
(
E2 −θ 1

)

=V ′ (E2
)(

θ −E2
)
+V

(
E2
)
+ ε
(
θ −θ 1

)
.

Hence, the tangent to Ṽ at E2 and the tangent to V at E2 intersect exactly at θ 1. But then
the derivative (34) does not change. This is shown in figure below.

Figure 18: Comparative statics on v2.
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Note further that since Ṽ ′|[θ 1,1]
> Ṽ |[θ 1,1]

, the bi-tangency points of Ṽ (if they exists),
denoted Ẽb

1 and Ẽb
2 , satisfy Ẽb

1 < Eb
1 and Ẽb

2 > Eb
2 . Hence, if E2 < Eb

2 , then E2 < Ẽb
2 so

that the nature of inefficiency remains unchanged. However, if E2 > Eb
2 , it is possible that

E2 < Ẽb
2 so that it would result in under-promotion if E[θ |θ̂0 < θ < θ 1]< E1.

A.4.5 Comparative statics on F

The following is a well-known result that tells us that if two CDFS F and G are ordered ac-
cording to their likelihood ratios, then their conditional distributions are first-order stochastic-
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ally ordered.42

Fact 3. Let F and H be two continuous CDF with support [0,1]. Then,

F (·|a < X < b)≥ H (·|a < X < b) ∀a,b ∈ [0,1] : b > a

if and only if h(·)
f (·) is increasing.

Suppose F and H are two prior distributions of workers’ types and that h(·)
f (·) is increasing

(i.e., H dominates F in the likelihood ratio order), then EH [θ |θ0 < θ < θ1] ≥ EF [θ |θ0 <

θ < θ1] for any θ0,θ1 ∈ [0,1] with θ1 > θ0.

Proposition 10. Let F and H be two CDFs on θ and that H dominates F in the likelihood

ratio order. Then, under-promotion is more likely under F than under H.

Proof. By Fact 3, EH [θ |θ ≥ θ 1]≥ EF [θ |θ ≥ θ 1] and because V is concave on [θ 1,θ 2],

V
(
E2 (H)

)
+V ′ (E2 (H)

)(
θ 1 −E2 (H)

)
>V

(
E2 (F)

)
+V ′ (E2 (F)

)(
θ 1 −E2 (F)

)
.

It must also be the case that EH [θ |θ0 < θ < θ 1]≥ EH [θ |θ0 < θ < θ 1] for any θ0 ∈ [0,θ 0].
By concavity of V on [θ 0,θ 1],

EH [θ |θ−1 < θ < θ 1]≤ EF [θ |θ−1 < θ < θ 1]

and so by the same argument as in Proposition 9, E[θ |θ−1 < θ < θ 1]−E1 must be smaller
under F than under H. ■

A.5 Partial commitment

Lemma 7. Any HR policy that solves (2) must be deterministic and monotone.

Proof. Fix an HR policy, ϕ . The result follows if we can prove the claim: there exists
measurable subsets S,S′ ⊆ θ such that (i) F(S) = F(S′) = ℓ > 0; (ii) supS′ ≤ θ̂ := infS;
and (iii) ϕ(·|θ) = δ j′ for all θ ∈ S and ϕ(·|θ ′) = δ j for all θ ′ ∈ S′ with j > j′; then the
firm’s direct payoff is weakly greater from ϕ̂ that equals ϕ except that ϕ(·|θ) = δ j for all
θ ∈ S and ϕ(·|θ ′) = δ j′ for all θ ′ ∈ S′. Condition (i) means that S and S′ have the same
size, (ii) means that S′ consists of workers whose types are below that of any worker in S,

42See, for example, Shaked and Shanthikumar (2007), Theorem 1.C.5.
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and (iii) means that ϕ assigns a higher position to lower types of workers who are in S′.
The claim says that the firm is better off by assigning lower types of workers to a lower
position. To prove the claim, observe that v j(θ) has increasing differences in ( j,θ) since,
for any θ ,θ ′ ∈ θ such that θ ′ > θ , we have

v2
(
θ
′)− v2 (θ) = k2

(
θ
′−θ

)
> k1

(
θ
′−θ

)
= v1

(
θ
′)− v1 (θ)> 0 = v0

(
θ
′)− v0 (θ) .

In particular, this means that, for any j > j′,

v j (θ)− v j′ (θ)> v j
(
θ
′)− v j′

(
θ
′) .

This observation, together with conditions (i) and (ii), means that
∫

S

[
v j (θ)− v j′ (θ)

]
dF (θ)≥

∫

S

[
v j

(
θ̂

)
− v j′

(
θ̂

)]
dF (θ)

=
[
v j

(
θ̂

)
− v j′

(
θ̂

)]
ℓ

=
∫

S′

[
v j

(
θ̂

)
− v j′

(
θ̂

)]
dF (θ)

≥
∫

S′

[
v j (θ)− v j′ (θ)

]
dF (θ) .

In fact, what we have shown is
∫

S
v j (θ)dF (θ)+

∫

S′
v j′ (θ)dF (θ)≥

∫

S
v j′ (θ)dF (θ)+

∫

S′
v j (θ)dF (θ) ;

i.e., the payoff from swapping assignments is greater. To see why the claim implies the res-
ult, observe that if ϕ is not monotone, then we can find S,S′ ⊆ θ that satisfies the conditions
of the claim. Now suppose that ϕ is monotone and involves randomisation, then there will
exist measures of workers who are sometimes assigned to a higher position and otherwise
assigned to a lower position. However, the firm can improve its payoff by assigning the
workers to a higher position without changing the marginal distribution via the claim. ■
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